scholarly journals Androgens regulate ovarian gene expression by balancing Ezh2-Jmjd3 mediated H3K27me3 dynamics

PLoS Genetics ◽  
2021 ◽  
Vol 17 (3) ◽  
pp. e1009483
Author(s):  
Sambit Roy ◽  
Binbin Huang ◽  
Niharika Sinha ◽  
Jianrong Wang ◽  
Aritro Sen

Conventionally viewed as male hormone, androgens play a critical role in female fertility. Although androgen receptors (AR) are transcription factors, to date very few direct transcriptional targets of ARs have been identified in the ovary. Using mouse models, this study provides three critical insights about androgen-induced gene regulation in the ovary and its impact on female fertility. First, RNA-sequencing reveals a number of genes and biological processes that were previously not known to be directly regulated by androgens in the ovary. Second, androgens can also influence gene expression by decreasing the tri-methyl mark on lysine 27 of histone3 (H3K27me3), a gene silencing epigenetic mark. ChIP-seq analyses highlight that androgen-induced modulation of H3K27me3 mark within gene bodies, promoters or distal enhancers have a much broader impact on ovarian function than the direct genomic effects of androgens. Third, androgen-induced decrease of H3K27me3 is mediated through (a) inhibiting the expression and activity of Enhancer of Zeste Homologue 2 (EZH2), a histone methyltransferase that promotes tri-methylation of K27 and (b) by inducing the expression of a histone demethylase called Jumonji domain containing protein-3 (JMJD3/KDM6B), responsible for removing the H3K27me3 mark. Androgens through the PI3K/Akt pathway, in a transcription-independent fashion, increase hypoxia-inducible factor 1 alpha (HIF1α) protein levels, which in turn induce JMJD3 expression. Furthermore, proof of concept studies involving in vivo knockdown of Ar in the ovary and ovarian (granulosa) cell-specific Ar knockout mouse model show that ARs regulate the expression of key ovarian genes through modulation of H3K27me3.

2009 ◽  
Vol 296 (6) ◽  
pp. C1321-C1328 ◽  
Author(s):  
R. P. Rhoads ◽  
R. M. Johnson ◽  
C. R. Rathbone ◽  
X. Liu ◽  
C. Temm-Grove ◽  
...  

Muscle regeneration involves the coordination of myogenesis and revascularization to restore proper muscle function. Myogenesis is driven by resident stem cells termed satellite cells (SC), whereas angiogenesis arises from endothelial cells and perivascular cells of preexisting vascular segments and the collateral vasculature. Communication between myogenic and angiogenic cells seems plausible, especially given the number of growth factors produced by SC. To characterize these interactions, we developed an in vitro coculture model composed of rat skeletal muscle SC and microvascular fragments (MVF). In this system, isolated epididymal MVF suspended in collagen gel are cultured over a rat SC monolayer culture. In the presence of SC, MVF exhibit greater indices of angiogenesis than MVF cultured alone. A positive dose-dependent effect of SC conditioned medium (CM) on MVF growth was observed, suggesting that SC secrete soluble-acting growth factor(s). Next, we specifically blocked VEGF action in SC CM, and this was sufficient to abolish satellite cell-induced angiogenesis. Finally, hypoxia-inducible factor-1α (HIF-1α), a transcriptional regulator of VEGF gene expression, was found to be expressed in cultured SC and in putative SC in sections of in vivo stretch-injured rat muscle. Hypoxic culture conditions increased SC HIF-1α activity, which was positively associated with SC VEGF gene expression and protein levels. Collectively, these initial observations suggest that a heretofore unexplored aspect of satellite cell physiology is the initiation of a proangiogenic program.


Author(s):  
Hongtao Li ◽  
Peng Chen ◽  
Lei Chen ◽  
Xinning Wang

Background: Nuclear factor kappa B (NF-κB) is usually activated in Wilms tumor (WT) cells and plays a critical role in WT development. Objective: The study purpose was to screen a NF-κB inhibitor from natural product library and explore its effects on WT development. Methods: Luciferase assay was employed to assess the effects of natural chemical son NF-κB activity. CCK-8 assay was conducted to assess cell growth in response to naringenin. WT xenograft model was established to analyze the effect of naringenin in vivo. Quantitative real-time PCR and Western blot were performed to examine the mRNA and protein levels of relative genes, respectively. Results: Naringenin displayed significant inhibitory effect on NF-κB activation in SK-NEP-1 cells. In SK-NEP-1 and G-401 cells, naringenin inhibited p65 phosphorylation. Moreover, naringenin suppressed TNF-α-induced p65 phosphorylation in WT cells. Naringenin inhibited TLR4 expression at both mRNA and protein levels in WT cells. CCK-8 staining showed that naringenin inhibited cell growth of the two above WT cells in dose-and time-dependent manner, whereas Toll-like receptor 4 (TLR4) over expression partially reversed the above phenomena. Besides, naringenin suppressed WT tumor growth in dose-and time-dependent manner in vivo. Western blot found that naringenin inhibited TLR4 expression and p65 phosphorylation in WT xenograft tumors. Conclusion: Naringenin inhibits WT development viasuppressing TLR4/NF-κB signaling


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nathan J. VanDusen ◽  
Julianna Y. Lee ◽  
Weiliang Gu ◽  
Catalina E. Butler ◽  
Isha Sethi ◽  
...  

AbstractThe forward genetic screen is a powerful, unbiased method to gain insights into biological processes, yet this approach has infrequently been used in vivo in mammals because of high resource demands. Here, we use in vivo somatic Cas9 mutagenesis to perform an in vivo forward genetic screen in mice to identify regulators of cardiomyocyte (CM) maturation, the coordinated changes in phenotype and gene expression that occur in neonatal CMs. We discover and validate a number of transcriptional regulators of this process. Among these are RNF20 and RNF40, which form a complex that monoubiquitinates H2B on lysine 120. Mechanistic studies indicate that this epigenetic mark controls dynamic changes in gene expression required for CM maturation. These insights into CM maturation will inform efforts in cardiac regenerative medicine. More broadly, our approach will enable unbiased forward genetics across mammalian organ systems.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
S. Memmert ◽  
A. Damanaki ◽  
A. V. B. Nogueira ◽  
S. Eick ◽  
M. Nokhbehsaim ◽  
...  

Cathepsin S is a cysteine protease and regulator of autophagy with possible involvement in periodontitis. The objective of this study was to investigate whether cathepsin S is involved in the pathogenesis of periodontal diseases. Human periodontal fibroblasts were cultured under inflammatory and infectious conditions elicited by interleukin-1β and Fusobacterium nucleatum, respectively. An array-based approach was used to analyze differential expression of autophagy-associated genes. Cathepsin S was upregulated most strongly and thus further studied in vitro at gene and protein levels. In vivo, gingival tissue biopsies from rats with ligature-induced periodontitis and from periodontitis patients were also analyzed at transcriptional and protein levels. Multiple gene expression changes due to interleukin-1β and F. nucleatum were observed in vitro. Both stimulants caused a significant cathepsin S upregulation. A significantly elevated cathepsin S expression in gingival biopsies from rats with experimental periodontitis was found in vivo, as compared to that from control. Gingival biopsies from periodontitis patients showed a significantly higher cathepsin S expression than those from healthy gingiva. Our findings provide original evidence that cathepsin S is increased in periodontal cells and tissues under inflammatory and infectious conditions, suggesting a critical role of this autophagy-associated molecule in the pathogenesis of periodontitis.


2017 ◽  
Vol 114 (45) ◽  
pp. E9559-E9568 ◽  
Author(s):  
Qing He ◽  
Richard Bouley ◽  
Zun Liu ◽  
Marc N. Wein ◽  
Yan Zhu ◽  
...  

Alterations in the activity/levels of the extralarge G protein α-subunit (XLαs) are implicated in various human disorders, such as perinatal growth retardation. Encoded by GNAS, XLαs is partly identical to the α-subunit of the stimulatory G protein (Gsα), but the cellular actions of XLαs remain poorly defined. Following an initial proteomic screen, we identified sorting nexin-9 (SNX9) and dynamins, key components of clathrin-mediated endocytosis, as binding partners of XLαs. Overexpression of XLαs in HEK293 cells inhibited internalization of transferrin, a process that depends on clathrin-mediated endocytosis, while its ablation by CRISPR/Cas9 in an osteocyte-like cell line (Ocy454) enhanced it. Similarly, primary cardiomyocytes derived from XLαs knockout (XLKO) pups showed enhanced transferrin internalization. Early postnatal XLKO mice showed a significantly higher degree of cardiac iron uptake than wild-type littermates following iron dextran injection. In XLKO neonates, iron and ferritin levels were elevated in heart and skeletal muscle, where XLαs is normally expressed abundantly. XLKO heart and skeletal muscle, as well as XLKO Ocy454 cells, showed elevated SNX9 protein levels, and siRNA-mediated knockdown of SNX9 in XLKO Ocy454 cells prevented enhanced transferrin internalization. In transfected cells, XLαs also inhibited internalization of the parathyroid hormone and type 2 vasopressin receptors. Internalization of transferrin and these G protein-coupled receptors was also inhibited in cells expressing an XLαs mutant missing the Gα portion, but not Gsα or an N-terminally truncated XLαs mutant unable to interact with SNX9 or dynamin. Thus, XLαs restricts clathrin-mediated endocytosis and plays a critical role in iron/transferrin uptake in vivo.


Endocrinology ◽  
2003 ◽  
Vol 144 (3) ◽  
pp. 839-849 ◽  
Author(s):  
Buffy S. Ellsworth ◽  
Brett R. White ◽  
Ann T. Burns ◽  
Brian D. Cherrington ◽  
Annette M. Otis ◽  
...  

Reproductive function is dependent on the interaction between GnRH and its cognate receptor found on gonadotrope cells of the anterior pituitary gland. GnRH activation of the GnRH receptor (GnRHR) is a potent stimulus for increased expression of multiple genes including the gene encoding the GnRHR itself. Thus, homologous regulation of the GnRHR is an important mechanism underlying gonadotrope sensitivity to GnRH. Previously, we have found that GnRH induction of GnRHR gene expression in αT3-1 cells is partially mediated by protein kinase C activation of a canonical activator protein-1 (AP-1) element. In contrast, protein kinase A and a cAMP response element-like element have been implicated in mediating the GnRH response of the GnRHR gene using a heterologous cell model (GGH3). Herein we find that selective removal of the canonical AP-1 site leads to a loss of GnRH regulation of the GnRHR promoter in transgenic mice. Thus, an intact AP-1 element is necessary for GnRH responsiveness of the GnRHR gene both in vitro and in vivo. Based on in vitro analyses, GnRH appeared to enhance the interaction of JunD, FosB, and c-Fos at the GnRHR AP-1 element. Although enhanced binding of cFos reflected an increase in gene expression, GnRH appeared to regulate both FosB and JunD at a posttranslational level. Neither overexpression of a constitutively active Raf-kinase nor pharmacological blockade of GnRH-induced ERK activation eliminated the GnRH response of the GnRHR promoter. GnRH responsiveness was, however, lost in αT3-1 cells that stably express a dominant-negative c-Jun N-terminal kinase (JNK) kinase, suggesting a critical role for JNK in mediating GnRH regulation of the GnRHR gene. Consistent with this possibility, we find that the ability of forskolin and membrane-permeable forms of cAMP to inhibit the GnRH response of the GnRHR promoter is associated with a loss of both JNK activation and GnRH-mediated recruitment of the primary AP-1-binding components.


2003 ◽  
Vol 285 (5) ◽  
pp. H2240-H2247 ◽  
Author(s):  
Elizabeth A. Nunamaker ◽  
Hai-Ying Zhang ◽  
Yuichi Shirasawa ◽  
Joseph N. Benoit ◽  
David A. Dean

The development of inexpensive and effective approaches to transiently decrease gene expression in vivo would be useful for the study of physiological processes in living animals. DNAzymes are a novel class of DNA oligonucleotides that can catalytically cleave target mRNAs and thereby reduce protein production. However, current methods for their delivery in vivo are limited and inefficient. In this study, we show that electroporation can be used to deliver DNAzymes to the intact mesenteric vasculature of rats. With the use of PKC-ϵ as a target, a set of wild-type and mutant control DNAzymes was designed and shown to reduce both PKC-ϵ mRNA and protein levels in cultured smooth muscle cells in a specific manner. The wild-type DNAzyme reduced PKC-ϵ protein levels by 70% at 24 h in two different cell lines without decreasing the levels of the five other PKC isoforms tested. When delivered to the intact vasculature using electroporation, the DNAzyme reduced PKC-ϵ protein levels by >60% without affecting these other PKC isoforms. Electroporation was required for oligonucleotide transfer and was able to deliver the DNAzymes to multiple cell layers in the vessel wall. Protein levels were reduced maximally by 24 h postelectroporation and returned to normal by 48 h. These results suggest that electroporation can be used to deliver DNAzymes and other DNA oligonucleotides to the vasculature in vivo and can decrease gene expression for a window of time that can be used for experimental studies.


2020 ◽  
Vol 295 (46) ◽  
pp. 15662-15676 ◽  
Author(s):  
Edward Pajarillo ◽  
James Johnson ◽  
Asha Rizor ◽  
Ivan Nyarko-Danquah ◽  
Getinet Adinew ◽  
...  

Manganese (Mn)-induced neurotoxicity resembles Parkinson's disease (PD), but the mechanisms underpinning its effects remain unknown. Mn dysregulates astrocytic glutamate transporters, GLT-1 and GLAST, and dopaminergic function, including tyrosine hydroxylase (TH). Our previous in vitro studies have shown that Mn repressed GLAST and GLT-1 via activation of transcription factor Yin Yang 1 (YY1). Here, we investigated if in vivo astrocytic YY1 deletion mitigates Mn-induced dopaminergic neurotoxicity, attenuating Mn-induced reduction in GLAST/GLT-1 expression in murine substantia nigra (SN). AAV5-GFAP-Cre-GFP particles were infused into the SN of 8-week–old YY1flox/flox mice to generate a region-specific astrocytic YY1 conditional knockout (cKO) mouse model. 3 weeks after adeno-associated viral (AAV) infusion, mice were exposed to 330 μg of Mn (MnCl2 30 mg/kg, intranasal instillation, daily) for 3 weeks. After Mn exposure, motor functions were determined in open-field and rotarod tests, followed by Western blotting, quantitative PCR, and immunohistochemistry to assess YY1, TH, GLAST, and GLT-1 levels. Infusion of AAV5-GFAP-Cre-GFP vectors into the SN resulted in region-specific astrocytic YY1 deletion and attenuation of Mn-induced impairment of motor functions, reduction of TH-expressing cells in SN, and TH mRNA/protein levels in midbrain/striatum. Astrocytic YY1 deletion also attenuated the Mn-induced decrease in GLAST/GLT-1 mRNA/protein levels in midbrain. Moreover, YY1 deletion abrogated its interaction with histone deacetylases in astrocytes. These results indicate that astrocytic YY1 plays a critical role in Mn-induced neurotoxicity in vivo, at least in part, by reducing astrocytic GLAST/GLT-1. Thus, YY1 might be a potential target for treatment of Mn toxicity and other neurological disorders associated with dysregulation of GLAST/GLT-1.


2010 ◽  
Vol 22 (1) ◽  
pp. 285
Author(s):  
T. T. B. Vo ◽  
E. B. Jeung

In the current study, calbindin-D9k (CaBP-9k), a potent biomarker for screening estrogen-like environmental chemicals in vivo and in vitro, was adopted to examine the potential estrogen-like property of the following parabens: propyl-, isopropyl-, butyl-, and isobutyl-paraben. Immature female rats were administered for 3 days from postnatal day 14 to 16 with 17?-ethinylestradiol (EE, 1 mg/kg of body weight (BW) per day) or parabens (62.5, 250, and 1000 mg/kg of BW per day). In uterotrophic assays, significantly increased uterus weights were detected in the EE-treated group and in the groups treated with the greatest dose of isopropyl-, butyl- and isobutyl-paraben. In addition, these parabens induced uterine CaBP-9k mRNA and protein levels, whereas co-treatment of parabens and fulvestrant (Faslodex, formerly known as ICI 182, 780), a pure estrogen receptor (ER) antagonist, completely reversed the paraben-induced gene expression and increased uterine weights. To investigate the ER-mediated mechanism(s) by which parabens exert their effects, the expression level of ERα and progesterone receptor (PR) was analyzed. Exposure to EE or parabens caused a dramatic decrease in expression of both ER? mRNA and protein levels, whereas co-treatment with fulvestrant reversed these effects. These data showed the difference of CaBP-9k and ER? expression, suggesting that CaBP-9k might not express via ER? pathway. In the effect of parabens on CaBP-9k expression through PR mediation, a significantly increased expression of uterine PR gene, a well-known ER regulating gene, at both transcriptional and translational levels was indicated in the greatest dose of isopropyl- and butyl-paraben. These parabens induced PR gene expression that was completely blocked by fulvestrant. This result indicates that CaBP-9k expression might involve PR mediates in the estrogenic effect of paraben in immature rat uteri. Taken together, parabens exhibited an estrogen-like property in vivo, which might be mediated by a PR and/or ER? signaling pathway. In addition, our results expanded the current understanding of the potential adverse effects of parabens associated with their estrogen-like activities. Further investigation is needed to elucidate in greater detail the adverse effects of parabens in humans and wildlife.


Author(s):  
Marta Camacho-Cardenosa ◽  
Alba Camacho-Cardenosa ◽  
Rafael Timón ◽  
Guillermo Olcina ◽  
Pablo Tomas-Carus ◽  
...  

Among other functions, hypoxia-inducible factor plays a critical role in bone–vascular coupling and bone formation. Studies have suggested that hypoxic conditioning could be a potential nonpharmacological strategy for treating skeletal diseases. However, there is no clear consensus regarding the bone metabolism response to hypoxia. Therefore, this review aims to examine the impact of different modes of hypoxia conditioning on bone metabolism. The PubMed and Web of Science databases were searched for experimental studies written in English that investigated the effects of modification of ambient oxygen on bone remodelling parameters of healthy organisms. Thirty-nine studies analysed the effect of sustained or cyclic hypoxia exposure on genetic and protein expression and mineralisation capacity of different cell models; three studies carried out in animal models implemented sustained or cyclic hypoxia; ten studies examined the effect of sustained, intermittent or cyclic hypoxia on bone health and hormonal responses in humans. Different modes of hypoxic conditioning may have different impacts on bone metabolism both in vivo and in vitro. Additional research is necessary to establish the optimal cyclical dose of oxygen concentration and exposure time.


Sign in / Sign up

Export Citation Format

Share Document