scholarly journals Cell Cycle and Anti-Estrogen Effects Synergize to Regulate Cell Proliferation and ER Target Gene Expression

PLoS ONE ◽  
2010 ◽  
Vol 5 (6) ◽  
pp. e11011 ◽  
Author(s):  
Mathieu Dalvai ◽  
Kerstin Bystricky
Author(s):  
Shayna T.J. Bradford ◽  
Edward Grimley ◽  
Ann M. Laszczyk ◽  
Pil H. Lee ◽  
Sanjeevkumar R. Patel ◽  
...  

Author(s):  
Aria Baniahmad

AbstractAlien has been characterized as a corepressor for nuclear hormone receptors that harbor a silencing domain such as the thyroid hormone receptor (TR), the vitamin D3 receptor (VDR) and DAX-1. In addition, the androgen receptor (AR), a steroid hormone receptor, interacts with Alien. Alien enhances gene silencing mediated by TR, VDR and DAX-1, whereas Alien inhibits AR-mediated transactivation. The inhibition of AR by Alien seems to be restricted to cases where AR is bound to AR antagonists. In line with this, Alien inhibits AR target gene expression and human prostate cancer cell proliferation in an antagonist-specific manner indicating that Alien has an inhibitory role for cell cycle progression. Alien mediates gene silencing by recruitment of histone deacetylase activity and interestingly through nucleo-some assembly activity. Hereby, Alien enhances nucleosome positioning mediated by nucleosome assembly protein 1, which suggests a novel molecular mechanism of corepressor function. Using a proteomic approach to identify Alien interacting partners, we detected the cell cycle factor E2F1 to bind to Alien in vivo. The E2F1-mediated transactivation and E2F target gene expression is inhibited by Alien, and in line with this Alien is observed to repress cell cycle progression.


2015 ◽  
Vol 57 (4) ◽  
pp. 662-673 ◽  
Author(s):  
Yiping Wang ◽  
Mengtao Xiao ◽  
Xiufei Chen ◽  
Leilei Chen ◽  
Yanping Xu ◽  
...  

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 2049-P
Author(s):  
REBECCA K. DAVIDSON ◽  
NOLAN CASEY ◽  
JASON SPAETH

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Lionel Condé ◽  
Yulemi Gonzalez Quesada ◽  
Florence Bonnet-Magnaval ◽  
Rémy Beaujois ◽  
Luc DesGroseillers

AbstractBackgroundStaufen2 (STAU2) is an RNA binding protein involved in the posttranscriptional regulation of gene expression. In neurons, STAU2 is required to maintain the balance between differentiation and proliferation of neural stem cells through asymmetric cell division. However, the importance of controlling STAU2 expression for cell cycle progression is not clear in non-neuronal dividing cells. We recently showed that STAU2 transcription is inhibited in response to DNA-damage due to E2F1 displacement from theSTAU2gene promoter. We now study the regulation of STAU2 steady-state levels in unstressed cells and its consequence for cell proliferation.ResultsCRISPR/Cas9-mediated and RNAi-dependent STAU2 depletion in the non-transformed hTERT-RPE1 cells both facilitate cell proliferation suggesting that STAU2 expression influences pathway(s) linked to cell cycle controls. Such effects are not observed in the CRISPR STAU2-KO cancer HCT116 cells nor in the STAU2-RNAi-depleted HeLa cells. Interestingly, a physiological decrease in the steady-state level of STAU2 is controlled by caspases. This effect of peptidases is counterbalanced by the activity of the CHK1 pathway suggesting that STAU2 partial degradation/stabilization fines tune cell cycle progression in unstressed cells. A large-scale proteomic analysis using STAU2/biotinylase fusion protein identifies known STAU2 interactors involved in RNA translation, localization, splicing, or decay confirming the role of STAU2 in the posttranscriptional regulation of gene expression. In addition, several proteins found in the nucleolus, including proteins of the ribosome biogenesis pathway and of the DNA damage response, are found in close proximity to STAU2. Strikingly, many of these proteins are linked to the kinase CHK1 pathway, reinforcing the link between STAU2 functions and the CHK1 pathway. Indeed, inhibition of the CHK1 pathway for 4 h dissociates STAU2 from proteins involved in translation and RNA metabolism.ConclusionsThese results indicate that STAU2 is involved in pathway(s) that control(s) cell proliferation, likely via mechanisms of posttranscriptional regulation, ribonucleoprotein complex assembly, genome integrity and/or checkpoint controls. The mechanism by which STAU2 regulates cell growth likely involves caspases and the kinase CHK1 pathway.


Author(s):  
Philipp Moritz Fricke ◽  
Angelika Klemm ◽  
Michael Bott ◽  
Tino Polen

Abstract Acetic acid bacteria (AAB) are valuable biocatalysts for which there is growing interest in understanding their basics including physiology and biochemistry. This is accompanied by growing demands for metabolic engineering of AAB to take advantage of their properties and to improve their biomanufacturing efficiencies. Controlled expression of target genes is key to fundamental and applied microbiological research. In order to get an overview of expression systems and their applications in AAB, we carried out a comprehensive literature search using the Web of Science Core Collection database. The Acetobacteraceae family currently comprises 49 genera. We found overall 6097 publications related to one or more AAB genera since 1973, when the first successful recombinant DNA experiments in Escherichia coli have been published. The use of plasmids in AAB began in 1985 and till today was reported for only nine out of the 49 AAB genera currently described. We found at least five major expression plasmid lineages and a multitude of further expression plasmids, almost all enabling only constitutive target gene expression. Only recently, two regulatable expression systems became available for AAB, an N-acyl homoserine lactone (AHL)-inducible system for Komagataeibacter rhaeticus and an l-arabinose-inducible system for Gluconobacter oxydans. Thus, after 35 years of constitutive target gene expression in AAB, we now have the first regulatable expression systems for AAB in hand and further regulatable expression systems for AAB can be expected. Key points • Literature search revealed developments and usage of expression systems in AAB. • Only recently 2 regulatable plasmid systems became available for only 2 AAB genera. • Further regulatable expression systems for AAB are in sight.


2002 ◽  
Vol 88 (2) ◽  
pp. 363-371 ◽  
Author(s):  
Aruna V. Krishnan ◽  
Donna M. Peehl ◽  
David Feldman

Sign in / Sign up

Export Citation Format

Share Document