scholarly journals Dioxin Toxicity In Vivo Results from an Increase in the Dioxin-Independent Transcriptional Activity of the Aryl Hydrocarbon Receptor

PLoS ONE ◽  
2010 ◽  
Vol 5 (11) ◽  
pp. e15382 ◽  
Author(s):  
Miguel Angel Céspedes ◽  
Maximo Ibo Galindo ◽  
Juan Pablo Couso
Cancers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 463 ◽  
Author(s):  
Wei-Min Chung ◽  
Yen-Ping Ho ◽  
Wei-Chun Chang ◽  
Yuan-Chang Dai ◽  
Lumin Chen ◽  
...  

Background: Epithelial ovarian cancer (EOC) is one of the most lethal gynecological malignancies and presents chemoresistance after chemotherapy treatment. Androgen receptor (AR) has been known to participate in proliferation. Yet the mechanisms of the resistance of this drug and its linkage to the AR remains unclear. Methods: To elucidate AR-related paclitaxel sensitivity, co-IP, luciferase reporter assay and ChIP assay were performed to identify that AR direct-regulated ABCG2 expression under paclitaxel treatment. IHC staining by AR antibody presented higher AR expression in serous-type patients than other types. AR degradation enhancer (ASC-J9) was used to examine paclitaxel-associated and paclitaxel-resistant cytotoxicity in vitro and in vivo. Results: We found AR/aryl hydrocarbon receptor (AhR)-mediates ABCG2 expression and leads to a change in paclitaxel cytotoxicity/sensitivity in EOC serous subtype cell lines. Molecular mechanism study showed that paclitaxel activated AR transactivity and bound to alternative ARE in the ABCG2 proximal promoter region. To identify AR as a potential therapeutic target, the ASC-J9 was used to re-sensitize paclitaxel-resistant EOC tumors upon paclitaxel treatment in vitro and in vivo. Conclusion: The results demonstrated that activation of AR transactivity beyond the androgen-associated biological effect. This novel AR mechanism explains that degradation of AR is the most effective therapeutic strategy for treating AR-positive EOC serous subtype.


2010 ◽  
Vol 69 (Suppl 2) ◽  
pp. A74-A74
Author(s):  
J-M Ramirez ◽  
N C Brembilla ◽  
O Sorg ◽  
R Chicheportiche ◽  
T Matthes ◽  
...  

2020 ◽  
Vol 177 (1) ◽  
pp. 188-201
Author(s):  
Sarah J Phelan-Dickinson ◽  
Brian C Palmer ◽  
Yue Chen ◽  
Lisa A DeLouise

Abstract Ultraviolet radiation (UVR) is a consistent part of the environment that has both beneficial and harmful effects on human health. UVR filters in the form of commercial sunscreens have been widely used to reduce the negative health effects of UVR exposure. Despite their benefit, literature suggests that some filters can penetrate skin and have off-target biological effects. We noted that many organic filters are hydrophobic and contain aromatic rings, making them potential modulators of Aryl hydrocarbon Receptor (AhR) signaling. We hypothesized that some filters may be able to act as agonists or antagonists on the AhR. Using a luciferase reporter cell line, we observed that the UVR filter octinoxate potentiated the ability of the known AhR ligand, 6-formylindolo[3,2-b]carbazole (FICZ), to activate the AhR. Cotreatments of keratinocytes with octinoxate and FICZ lead to increased levels of cytochrome P4501A1 (CYP1A1) and P4501B1 (CYP1B1) mRNA transcripts, in an AhR-dependent fashion. Mechanistic studies revealed that octinoxate is an inhibitor of CYP1A1 and CYP1B1, with IC50 values at approximately 1 µM and 586 nM, respectively. In vivo topical application of octinoxate and FICZ also elevated CYP1A1 and CYP1B1 mRNA levels in mouse skin. Our results show that octinoxate is able to indirectly modulate AhR signaling by inhibiting CYP1A1 and CYP1B1 enzyme function, which may have important downstream consequences for the metabolism of various compounds and skin integrity. It is important to continue studying the off-target effects of octinoxate and other UVR filters, because they are used on skin on a daily basis world-wide.


2014 ◽  
Vol 86 (5) ◽  
pp. 593-608 ◽  
Author(s):  
Ashley J. Parks ◽  
Michael P. Pollastri ◽  
Mark E. Hahn ◽  
Elizabeth A. Stanford ◽  
Olga Novikov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document