scholarly journals An Improved Cerulean Fluorescent Protein with Enhanced Brightness and Reduced Reversible Photoswitching

PLoS ONE ◽  
2011 ◽  
Vol 6 (3) ◽  
pp. e17896 ◽  
Author(s):  
Michele L. Markwardt ◽  
Gert-Jan Kremers ◽  
Catherine A. Kraft ◽  
Krishanu Ray ◽  
Paula J. C. Cranfill ◽  
...  

Cyan fluorescent proteins (CFPs), such as Cerulean, are widely used as donor fluorophores in Förster resonance energy transfer (FRET) experiments. Nonetheless, the most widely used variants suffer from drawbacks that include low quantum yields and unstable flurorescence. To improve the fluorescence properties of Cerulean, we used the X-ray structure to rationally target specific amino acids for optimization by site-directed mutagenesis. Optimization of residues in strands 7 and 8 of the β-barrel improved the quantum yield of Cerulean from 0.48 to 0.60. Further optimization by incorporating the wild-type T65S mutation in the chromophore improved the quantum yield to 0.87. This variant, mCerulean3, is 20% brighter and shows greatly reduced fluorescence photoswitching behavior compared to the recently described mTurquoise fluorescent protein in vitro and in living cells. The fluorescence lifetime of mCerulean3 also fits to a single exponential time constant, making mCerulean3 a suitable choice for fluorescence lifetime microscopy experiments. Furthermore, inclusion of mCerulean3 in a fusion protein with mVenus produced FRET ratios with less variance than mTurquoise-containing fusions in living cells. Thus, mCerulean3 is a bright, photostable cyan fluorescent protein which possesses several characteristics that are highly desirable for FRET experiments.

2019 ◽  
Vol 20 (3) ◽  
pp. 679 ◽  
Author(s):  
Eishu Hirata ◽  
Etsuko Kiyokawa

Extracellular signal-regulated kinase (ERK) is a major downstream factor of the EGFR-RAS-RAF signalling pathway, and thus the role of ERK in cell growth has been widely examined. The development of biosensors based on fluorescent proteins has enabled us to measure ERK activities in living cells, both after growth factor stimulation and in its absence. Long-term imaging unexpectedly revealed the oscillative activation of ERK in an epithelial sheet or a cyst in vitro. Studies using transgenic mice expressing the ERK biosensor have revealed inhomogeneous ERK activities among various cell species. In vivo Förster (or fluorescence) resonance energy transfer (FRET) imaging shed light on a novel role of ERK in cell migration. Neutrophils and epithelial cells in various organs such as intestine, skin, lung and bladder showed spatio-temporally different cell dynamics and ERK activities. Experiments using inhibitors confirmed that ERK activities are required for various pathological responses, including epithelial repair after injuries, inflammation, and niche formation of cancer metastasis. In conclusion, biosensors for ERK will be powerful and valuable tools to investigate the roles of ERK in situ.


2016 ◽  
Vol 7s1 ◽  
pp. BECB.S39045
Author(s):  
Etai Sapoznik ◽  
Guoguang Niu ◽  
Yu Zhou ◽  
Sean V. Murphy ◽  
Shay Soker

Fluorescent protein imaging, a promising tool in biological research, incorporates numerous applications that can be of specific use in the field of regenerative medicine. To enhance tissue regeneration efforts, scientists have been developing new ways to monitor tissue development and maturation in vitro and in vivo. To that end, new imaging tools and novel fluorescent proteins have been developed for the purpose of performing deep-tissue high-resolution imaging. These new methods, such as intravital microscopy and Förster resonance energy transfer, are providing new insights into cellular behavior, including cell migration, morphology, and phenotypic changes in a dynamic environment. Such applications, combined with multimodal imaging, significantly expand the utility of fluorescent protein imaging in research and clinical applications of regenerative medicine.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3105 ◽  
Author(s):  
Henning Höfig ◽  
Michele Cerminara ◽  
Ilona Ritter ◽  
Antonie Schöne ◽  
Martina Pohl ◽  
...  

Bacterial periplasmic binding proteins (PBPs) undergo a pronounced ligand-induced conformational change which can be employed to monitor ligand concentrations. The most common strategy to take advantage of this conformational change for a biosensor design is to use a Förster resonance energy transfer (FRET) signal. This can be achieved by attaching either two fluorescent proteins (FPs) or two organic fluorescent dyes of different colors to the PBPs in order to obtain an optical readout signal which is closely related to the ligand concentration. In this study we compare a FP-equipped and a dye-labeled version of the glucose/galactose binding protein MglB at the single-molecule level. The comparison demonstrates that changes in the FRET signal upon glucose binding are more pronounced for the FP-equipped sensor construct as compared to the dye-labeled analog. Moreover, the FP-equipped sensor showed a strong increase of the FRET signal under crowding conditions whereas the dye-labeled sensor was not influenced by crowding. The choice of a labeling scheme should therefore be made depending on the application of a FRET-based sensor.


2021 ◽  
Author(s):  
Y. Bousmah ◽  
H. Valenta ◽  
G. Bertolin ◽  
U. Singh ◽  
V. Nicolas ◽  
...  

AbstractYellow fluorescent proteins (YFP) are widely used as optical reporters in Förster Resonance Energy Transfer (FRET) based biosensors. Although great improvements have been done, the sensitivity of the biosensors is still limited by the low photostability and the poor fluorescence performances of YFPs at acidic pHs. In fact, today, there is no yellow variant derived from the EYFP with a pK1/2 below ∼5.5. Here, we characterize a new yellow fluorescent protein, tdLanYFP, derived from the tetrameric protein from the cephalochordate B. lanceolatum, LanYFP. With a quantum yield of 0.92 and an extinction coefficient of 133 000 mol−1.L.cm−1, it is, to our knowledge, the brightest dimeric fluorescent protein available, and brighter than most of the monomeric YFPs. Contrasting with EYFP and its derivatives, tdLanYFP has a very high photostability in vitro and preserves this property in live cells. As a consequence, tdLanYFP allows the imaging of cellular structures with sub-diffraction resolution with STED nanoscopy. We also demonstrate that the combination of high brightness and strong photostability is compatible with the use of spectro-microscopies in single molecule regimes. Its very low pK1/2 of 3.9 makes tdLanYFP an excellent tag even at acidic pHs. Finally, we show that tdLanYFP can be a FRET partner either as donor or acceptor in different biosensing modalities. Altogether, these assets make tdLanYFPa very attractive yellow fluorescent protein for long-term or single-molecule live-cell imaging that is also suitable for FRET experiment including at acidic pH.


Biosensors ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 122 ◽  
Author(s):  
Skruzny ◽  
Pohl ◽  
Abella

Förster resonance energy transfer (FRET) microscopy is a powerful fluorescence microscopy method to study the nanoscale organization of multiprotein assemblies in vivo. Moreover, many biochemical and biophysical processes can be followed by employing sophisticated FRET biosensors directly in living cells. Here, we summarize existing FRET experiments and biosensors applied in yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, two important models of fundamental biomedical research and efficient platforms for analyses of bioactive molecules. We aim to provide a practical guide on suitable FRET techniques, fluorescent proteins, and experimental setups available for successful FRET experiments in yeasts.


2019 ◽  
Vol 20 (16) ◽  
pp. 3859 ◽  
Author(s):  
Michael Winkler ◽  
Florian Wrensch ◽  
Pascale Bosch ◽  
Maike Knoth ◽  
Michael Schindler ◽  
...  

The interferon-induced transmembrane proteins 1–3 (IFITM1–3) inhibit host cell entry of several viruses. However, it is incompletely understood how IFITM1–3 exert antiviral activity. Two phenylalanine residues, F75 and F78, within the intramembrane domain 1 (IM1) were previously shown to be required for IFITM3/IFITM3 interactions and for inhibition of viral entry, suggesting that IFITM/IFITM interactions might be pivotal to antiviral activity. Here, we employed a fluorescence resonance energy transfer (FRET) assay to analyze IFITM/IFITM interactions. For assay calibration, we equipped two cytosolic, non-interacting proteins, super yellow fluorescent protein (SYFP) and super cyan fluorescent protein (SCFP), with signals that target proteins to membrane rafts and also analyzed a SCFP-SYFP fusion protein. This strategy allowed us to discriminate background signals resulting from colocalization of proteins at membrane subdomains from signals elicited by protein–protein interactions. Coexpression of IFITM1–3 and IFITM5 fused to fluorescent proteins elicited strong FRET signals, and mutation of F75 and F78 in IFITM3 (mutant IFITM3-FF) abrogated antiviral activity, as expected, but did not alter cellular localization and FRET signals. Moreover, IFITM3-FF co-immunoprecipitated efficiently with wild type (wt) IFITM3, lending further support to the finding that lack of antiviral activity of IFITM3-FF was not due to altered membrane targeting or abrogated IFITM3-IFITM3 interactions. Collectively, we report an assay that allows quantifying IFITM/IFITM interactions. Moreover, we confirm residues F75 and F78 as critical for antiviral activity but also show that these residues are dispensable for IFITM3 membrane localization and IFITM3/IFITM3 interactions.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Erika Günther ◽  
André Klauß ◽  
Mauricio Toro-Nahuelpan ◽  
Dirk Schüler ◽  
Carsten Hille ◽  
...  

AbstractProtein interaction and protein imaging strongly benefit from the advancements in time-resolved and superresolution fluorescence microscopic techniques. However, the techniques were typically applied separately and ex vivo because of technical challenges and the absence of suitable fluorescent protein pairs. Here, we show correlative in vivo fluorescence lifetime imaging microscopy Förster resonance energy transfer (FLIM-FRET) and stimulated emission depletion (STED) microscopy to unravel protein mechanics and structure in living cells. We use magnetotactic bacteria as a model system where two proteins, MamJ and MamK, are used to assemble magnetic particles called magnetosomes. The filament polymerizes out of MamK and the magnetosomes are connected via the linker MamJ. Our system reveals that bacterial filamentous structures are more fragile than the connection of biomineralized particles to this filament. More importantly, we anticipate the technique to find wide applicability for the study and quantification of biological processes in living cells and at high resolution.


2006 ◽  
Vol 20 (6) ◽  
pp. 1218-1230 ◽  
Author(s):  
Alicja J. Copik ◽  
M. Scott Webb ◽  
Aaron L. Miller ◽  
Yongxin Wang ◽  
Raj Kumar ◽  
...  

Abstract The mechanism through which the glucocorticoid receptor (GR) stimulates transcription is still unclear, although it is clear that the GR affects assembly of the transcriptional machinery. The binding of the TATA-binding protein (TBP) to the TATA-box is accepted as essential in this process. It is known that the GR can interact in vitro with TBP, but the direct interaction of TBP with GR has not been previously characterized quantitatively and has not been appreciated as an important step in assembling the transcriptional complex. Herein, we demonstrate that the TBP-GR interaction is functionally significant by characterizing the association of TBP and GR in vitro by a combination of techniques and confirming the role of this interaction in vivo. Combined analysis, using native gel electrophoresis, sedimentation equilibrium, and isothermal microcalorimetry titrations, characterize the stoichiometry, affinity, and thermodynamics of the TBP-GR interaction. TBP binds recombinant GR activation function 1 (AF1) with a 1:2 stoichiometry and a dissociation constant in the nanomolar range. In vivo fluorescence resonance energy transfer experiments, using fluorescently labeled TBP and various GR constructs, transiently transfected into CV-1 cells, show GR-TBP interactions, dependent on AF1. AF1-deletion variants showed fluorescence resonance energy transfer efficiencies on the level of coexpressed cyan fluorescent protein and yellow fluorescent protein, indicating that the interaction is dependent on AF1 domain. To demonstrate the functional role of the in vivo GR-TBP interaction, increased amounts of TBP expressed in vivo stimulated expression of GR-driven reporters and endogenous genes, and the effect was also specifically dependent on AF1.


2007 ◽  
Vol 282 (46) ◽  
pp. 33494-33506 ◽  
Author(s):  
Bill. B. Chen ◽  
Rama K. Mallampalli

CTP:phosphocholine cytidylyltransferase (CCTα) is a proteolytically sensitive enzyme essential for production of phosphatidylcholine, the major phospholipid of animal cell membranes. The molecular signals that govern CCTα protein stability are unknown. An NH2-terminal PEST sequence within CCTα did not serve as a degradation signal for the proteinase, calpain. Calmodulin (CaM) stabilized CCTα from calpain proteolysis. Adenoviral gene transfer of CaM in cells protected CCTα, whereas CaM small interfering RNA accentuated CCTα degradation by calpains. CaM bound CCTα as revealed by fluorescence resonance energy transfer and two-hybrid analysis. Mapping and site-directed mutagenesis of CCTα uncovered a motif (LQERVDKVK) harboring a vital recognition site, Gln243, whereby CaM directly binds to the enzyme. Mutagenesis of CCTα Gln243 not only resulted in loss of CaM binding but also led to complete calpain resistance in vitro and in vivo. Thus, calpains and CaM both access CCTα using a structurally similar molecular signature that profoundly affects CCTα levels. These data suggest that CaM, by antagonizing calpain, serves as a novel binding partner for CCTα that stabilizes the enzyme under proinflammatory stress.


Sign in / Sign up

Export Citation Format

Share Document