scholarly journals Exposure of Chlorpromazine to 266 nm Laser Beam Generates New Species with Antibacterial Properties: Contributions to Development of a New Process for Drug Discovery

PLoS ONE ◽  
2013 ◽  
Vol 8 (2) ◽  
pp. e55767 ◽  
Author(s):  
Mihail Lucian Pascu ◽  
Balazs Danko ◽  
Ana Martins ◽  
Nikoletta Jedlinszki ◽  
Tatiana Alexandru ◽  
...  
2019 ◽  
Vol 26 (28) ◽  
pp. 5363-5388 ◽  
Author(s):  
Ananda Kumar Konreddy ◽  
Grandhe Usha Rani ◽  
Kyeong Lee ◽  
Yongseok Choi

: Drug repurposing is a safe and successful pathway to speed up the novel drug discovery and development processes compared with de novo drug discovery approaches. Drug repurposing uses FDA-approved drugs and drugs that failed in clinical trials, which have detailed information on potential toxicity, formulation, and pharmacology. Technical advancements in the informatics, genomics, and biological sciences account for the major success of drug repurposing in identifying secondary indications of existing drugs. Drug repurposing is playing a vital role in filling the gap in the discovery of potential antibiotics. Bacterial infections emerged as an ever-increasing global public health threat by dint of multidrug resistance to existing drugs. This raises the urgent need of development of new antibiotics that can effectively fight multidrug-resistant bacterial infections (MDRBIs). The present review describes the key role of drug repurposing in the development of antibiotics during 2016–2017 and of the details of recently FDA-approved antibiotics, pipeline antibiotics, and antibacterial properties of various FDA-approved drugs of anti-cancer, anti-fungal, anti-hyperlipidemia, antiinflammatory, anti-malarial, anti-parasitic, anti-viral, genetic disorder, immune modulator, etc. Further, in view of combination therapies with the existing antibiotics, their potential for new implications for MDRBIs is discussed. The current review may provide essential data for the development of quick, safe, effective, and novel antibiotics for current needs and suggest acuity in its effective implications for inhibiting MDRBIs by repurposing existing drugs.


2014 ◽  
Vol 631 ◽  
pp. 88-92 ◽  
Author(s):  
Kārlis Gross ◽  
Anastasija Jersova ◽  
Arturs Viksna

Peroxide ions in apatite provides an additional resource for imparting an antibacterial capability in apatite. A hydrothermal process has been developed for including peroxide ions into the apatite lattice. Three oxygen generation compounds, hydrogen peroxide, ammonium persulphate and paracetic acid were investigated for peroxyapatite generation. Hydrogen peroxide provides the highest peroxide containing apatite. Both the oxygen generation and the apatite lattice formation represented the two critical factors for producing peroxyapatite. Unlike with high temperature processing, the cooling rate did not influence the retained peroxide content. This new process provides a building block for investigating antibacterial properties of peroxyapatite in a low temperature process.


2011 ◽  
Vol 403-408 ◽  
pp. 3350-3353 ◽  
Author(s):  
Yi Qiang Fan ◽  
Hua Wei Li ◽  
Ian G. Foulds

This study presents a new process for fabricating microlens and microlens arrays directly on a surface of polystyrene using a CO2 laser. The working spot of the polystyrene is heated locally by a focused CO2 laser beam, which tends to have a hyperboloid profile due to the surface tension and can be used as a microlens. The microlenses with different dimensions were fabricated by changing the power of the laser beam. Microlens array was also fabricated with multiple scans of the laser beam on the polystyrene surface.


Flow cytometry is a sensitive and quantitative platform for the measurement of particle fluorescence. In flow cytometry, the particles in a sample flow in single file through a focused laser beam at rates of hundreds to thousands of particles per second. During the time each particle is in the laser beam, on the order of ten microseconds, one or more fluorescent dyes associated with that particle are excited. The fluorescence emitted from each particle is collected through a microscope objective, spectrally filtered, and detected with photomultiplier tubes. Flow cytometry is uniquely capable of the precise and quantitative molecular analysis of genomic sequence information, interactions between purified biomolecules and cellular function. Combined with automated sample handling for increased sample throughput, these features make flow cytometry a versatile platform with applications at many stages of drug discovery. Traditionally, the particles studied are cells, especially blood cells; flow cytometry is used extensively in immunology. This volume shows how flow cytometry is integrated into modern biotechnology, dealing with issues of throughput, content, sensitivity, and high throughput informatics with applications in genomics, proteomics and protein-protein interactions, drug discovery, vaccine development, plant and reproductive biology, pharmacology and toxicology, cell-cell interactions and protein engineering.


Author(s):  
David W. Piston ◽  
Brian D. Bennett ◽  
Robert G. Summers

Two-photon excitation microscopy (TPEM) provides attractive advantages over confocal microscopy for three-dimensionally resolved fluorescence imaging and photochemistry. Two-photon excitation arises from the simultaneous absorption of two photons in a single quantitized event whose probability is proportional to the square of the instantaneous intensity. For example, two red photons can cause the transition to an excited electronic state normally reached by absorption in the ultraviolet. In practice, two-photon excitation is made possible by the very high local instantaneous intensity provided by a combination of diffraction-limited focusing of a single laser beam in the microscope and the temporal concentration of 100 femtosecond pulses generated by a mode-locked laser. Resultant peak excitation intensities are 106 times greater than the CW intensities used in confocal microscopy, but the pulse duty cycle of 10-5 maintains the average input power on the order of 10 mW, only slightly greater than the power normally used in confocal microscopy.


Author(s):  
Jean-Paul Revel

The last few years have been marked by a series of remarkable developments in microscopy. Perhaps the most amazing of these is the growth of microscopies which use devices where the place of the lens has been taken by probes, which record information about the sample and display it in a spatial from the point of view of the context. From the point of view of the biologist one of the most promising of these microscopies without lenses is the scanned force microscope, aka atomic force microscope.This instrument was invented by Binnig, Quate and Gerber and is a close relative of the scanning tunneling microscope. Today's AFMs consist of a cantilever which bears a sharp point at its end. Often this is a silicon nitride pyramid, but there are many variations, the object of which is to make the tip sharper. A laser beam is directed at the back of the cantilever and is reflected into a split, or quadrant photodiode.


Sign in / Sign up

Export Citation Format

Share Document