scholarly journals FOXO3a Potentiates hTERT Gene Expression by Activating c-MYC and Extends the Replicative Life-Span of Human Fibroblast

PLoS ONE ◽  
2014 ◽  
Vol 9 (7) ◽  
pp. e101864 ◽  
Author(s):  
Shuntaro Yamashita ◽  
Kaori Ogawa ◽  
Takahiro Ikei ◽  
Tsukasa Fujiki ◽  
Yoshinori Katakura
2004 ◽  
Vol 279 (17) ◽  
pp. 17826-17833 ◽  
Author(s):  
Carmen Martin-Ruiz ◽  
Gabriele Saretzki ◽  
Joanne Petrie ◽  
Juliane Ladhoff ◽  
Jessie Jeyapalan ◽  
...  

Author(s):  
Mritunjay Kumar Singh ◽  
Ravi Deval

Aims: Biotic stress given by Aspergillus niger enhances trans-resveratrol production in Arachis hypogaea plant. This plant extract  increases sir2 gene expression and Replicative Life Span in  Saccharomyces cerevisiae. Design of Study: Peanut plant was grown in aseptic environment, infected by Aspergillus niger. Plant extract used for quantification of trans-resveratrol by RP-HPLC. Yeast culture was grown in Potato dextrose media along with plant extract. Sir2 gene expression fold calculated by real time pcr. Replicative Life Span of yeast was measured by spectrophotometer. Place and Duration of Study: Allele Life Sciences Pvt. Ltd., Department of Biotechnology between February 2017 to March 2020. Methodology: Biotic stress in Arachis hypogaea plant was induced by wounding the leaves and introducing Aspergillus niger to enhance trans-resveratrol production. Tran-resveratrol was quantified by Reverse Phase High Pressure Liquid Chromatography (RP-HPLC). Two methods conducted to check reverse ageing, first one epigenetic based, when extracted trans-resveratrol from infected Arachis hypogaea plant extract added to Saccharomyces cerevisiae culture, it enhanced expression of Sir2 gene in Saccharomyces cerevisiae measured by qPCR, ABI applied biosystem. Process included RNA isolation, cDNA synthesis and thereafter qPCR. Enhanced expression of sirtuin responsible for gene silencing as sirtuin (Sir2 gene product) is a class of Histone deacetylase transferase enzyme. Second method, Replicative Life Span of Saccharomyces cerevisiae culture increased when Aspergillus niger infected peanut plant extract added to yeast culture which was measured through spectrophotometer at 600nm and showed high absorbance value. Results: Tran-resveratrol was quantified by Reverse Phase High Pressure Liquid Chromatography (RP-HPLC) and yield was 2.24 mg/g. Sir2 gene expression increased by 1.56 fold in yeast grown in infected peanut plant extract. Absorbance of yeast culture grown in infected peanut plant extract was 0.522±0.008 which was higher than control. Conclusion: Sir2 gene expression enhances along with replicative life span in yeast in presence of peanut plant extract.


2021 ◽  
Vol 8 ◽  
Author(s):  
Lygia S. Nogueira ◽  
Carolina P. Vasconcelos ◽  
Geovanni Pereira Mitre ◽  
Leonardo Oliveira Bittencourt ◽  
Jessica Rodrigues Plaça ◽  
...  

Human periodontal ligament fibroblast (hPLF) cells play an important role in maintaining oral cavity homeostasis with special function in tissue regeneration and maintenance of dental alveoli. Although their primary cell cultures are considered a good experimental model with no genetic changes, the finite life span may limit some experimental designs. The immortalization process increases cell life span but may cause genetic changes and chromosomal instability, resulting in direct effects on physiological cell responses. In this way, we aimed to investigate the global gene expression of hPLFs after the immortalization process by the ectopic expression of the catalytic subunit of the enzyme telomerase reverse transcriptase (hTERT) through transcriptome analysis. The embryonic origin of the primary culture of hPLF cells and immortalized hPLF-hTERT was also tested by vimentin staining, hTERT synthesis evaluated by indirect immunocytochemistry, analysis of cell proliferation, and morphology. The results indicated that hPLFs and hPLF-hTERT were positive for vimentin. On the 20th cell passage, hPLFs were in senescence, while hPLF-hTERT maintained their proliferation and morphology characteristics. At the same passage, hPLF-hTERT presented a significant increase in hTERT synthesis, but transcriptome did not reveal overexpression of the hTERT gene. Fifty-eight genes had their expression altered (11 upregulated and 47 downregulated) with the absence of changes in the key genes related to these cell types and in the main cancer-associated genes. In addition, the increase in hTERT protein expression without the overexpression of its gene indicates posttranscriptional level regulation. Successful immortalization of hPLFs through the ectopic expression of hTERT encourages further studies to design experimental protocols to investigate clinical questions from a translational perspective.


Author(s):  
Duangjai Tungmunnithum ◽  
Malika Abid ◽  
Ahmed Elamrani ◽  
Samantha Drouet ◽  
Mohamed Addi ◽  
...  

Almond (Prunus dulcis (Mill.) D.A.Webb) is one of the largest nut crops in the world. Recently, phenolic compounds, mostly stored in almond skin, have been associated with much of the health-promoting behavior associated with their intake. The almond skin enriched fraction obtained from cold-pressed oil residues of the endemic Moroccan Beldi ecotypes is particularly rich in chlorogenic acid. In this study, both almond skin extract (AE) and chlorogenic acid (CHL) supplements, similar to traditional positive control resveratrol, significantly increased the replicative life-span of yeast compared to the untreated group. Our results showed that AE and CHL significantly reduced the production of reactive oxygen and nitrogen species (ROS/RNS), most likely due to their ability to maintain mitochondrial function during aging, as indicated by the maintenance of normal mitochondrial membrane potential in treated groups. This may be associated with the observed activation of the anti-oxidative stress response in treated yeast, which results in activation at both gene expression and enzymatic activity levels for SOD2 and SIR2, the latter being an upstream inducer of SOD2 expression. Interestingly, the differential gene expression induction of mitochondrial SOD2 gene at the expense of the cytosolic SOD1 gene confirms the key role of mitochondrial function in this regulation. Furthermore, AE and CHL have contributed to the survival of yeast under UV-C-induced oxidative stress, by reducing the development of ROS / RNS, resulting in a significant reduction in cellular oxidative damage as evidenced by decreased membrane lipid peroxidation, protein carbonyl content and 8-oxo-guanine formation in DNA. Together, these results demonstrate the interest of AE and CHL as new regulators in the replicative life-span and control of the oxidative stress response of yeast.


Blood ◽  
2001 ◽  
Vol 98 (3) ◽  
pp. 597-603 ◽  
Author(s):  
Nathalie Rufer ◽  
Marco Migliaccio ◽  
Jennifer Antonchuk ◽  
R. Keith Humphries ◽  
Eddy Roosnek ◽  
...  

Abstract In most human somatic cells telomeres progressively shorten with each cell division eventually leading to chromosomal instability and cell senescence. The loss of telomere repeats with cell divisions may also limit the replicative life span of antigen-specific T lymphocytes. Recent studies have shown that the replicative life span of various primary human cells can be prolonged by induced expression of the telomerase reverse transcriptase (hTERT) gene. To test whether introduction of hTERT can extend the life span of primary human T lymphocytes, naive CD8+ T lymphocytes were transfected with retroviral vectors containing the hTERTgene. Transduced T-cell clones expressed high levels of telomerase and either maintained or elongated their telomere lengths upon culture for extended periods of time. Two of the transduced subclones retained a normal cloning efficiency for more than 170 population doublings (PDs). In contrast, T-cell clones transfected with control vectors exhibited progressive telomere length shortening and stopped proliferation at around 108 PDs. Telomerase-positive T clones had a normal 46,XY karyotype, maintained their cytotoxic properties, and showed very little staining for the apoptotic marker annexin-V. These results indicate that ectopic hTERT gene expression is capable of extending the replicative life span of primary human CD8+cytotoxic T lymphocytes.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Aaron L. Slusher ◽  
Tiffany M. Zúñiga ◽  
Edmund O. Acevedo

Age-related elevations in proinflammatory cytokines, known as inflamm-aging, are associated with shorter immune cell telomere lengths. Purpose. This study examined the relationship of plasma PTX3 concentrations, a biomarker of appropriate immune function, with telomere length in 15 middle-aged (40-64 years) and 15 young adults (20-31 years). In addition, PBMCs were isolated from middle-aged and young adults to examine their capacity to express a key mechanistic component of telomere length maintenance, human telomerase reverse transcriptase (hTERT), following ex vivo cellular stimulation. Methods. Plasma PTX3 and inflammatory cytokines (i.e., IL-6, IL-10, TGF-β, and TNF-α), PBMC telomere lengths, and PBMC hTERT gene expression and inflammatory protein secretion following exposure to LPS, PTX3, and PTX3+LPS were measured. Results. Aging was accompanied by the accumulation of centrally located visceral adipose tissue, without changes in body weight and BMI, and alterations in the systemic inflammatory milieu (decreased plasma PTX3 and TGF-β; increased TNF-α (p≤0.050)). In addition, shorter telomere lengths in middle-aged compared to young adults (p=0.011) were negatively associated with age, body fat percentages, and plasma TNF-α (r=−0.404, p=0.027; r=−0.427, p=0.019; and r=−0.323, p=0.041, respectively). Finally, the capacity of PBMCs to increase hTERT gene expression following ex vivo stimulation was impaired in middle-aged compared to young adults (p=0.033) and negatively associated with telomere lengths (r=0.353, p=0.028). Conclusions. Proinflammation and the impaired hTERT gene expression capacity of PBMCs may contribute to age-related telomere attrition and disease.


2017 ◽  
Vol 72 (10) ◽  
pp. 1305-1310 ◽  
Author(s):  
Alexander Mendenhall ◽  
Matthew M Crane ◽  
Patricia M Tedesco ◽  
Thomas E Johnson ◽  
Roger Brent

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
So-mi Kang ◽  
Min-Ho Yoon ◽  
Su-Jin Lee ◽  
Jinsook Ahn ◽  
Sang Ah Yi ◽  
...  

AbstractWerner syndrome (WRN) is a rare progressive genetic disorder, caused by functional defects in WRN protein and RecQ4L DNA helicase. Acceleration of the aging process is initiated at puberty and the expected life span is approximately the late 50 s. However, a Wrn-deficient mouse model does not show premature aging phenotypes or a short life span, implying that aging processes differ greatly between humans and mice. Gene expression analysis of WRN cells reveals very similar results to gene expression analysis of Hutchinson Gilford progeria syndrome (HGPS) cells, suggesting that these human progeroid syndromes share a common pathological mechanism. Here we show that WRN cells also express progerin, an abnormal variant of the lamin A protein. In addition, we reveal that duplicated sequences of human WRN (hWRN) from exon 9 to exon 10, which differ from the sequence of mouse WRN (mWRN), are a natural inhibitor of progerin. Overexpression of hWRN reduced progerin expression and aging features in HGPS cells. Furthermore, the elimination of progerin by siRNA or a progerin-inhibitor (SLC-D011 also called progerinin) can ameliorate senescence phenotypes in WRN fibroblasts and cardiomyocytes, derived from WRN-iPSCs. These results suggest that progerin, which easily accumulates under WRN-deficient conditions, can lead to premature aging in WRN and that this effect can be prevented by SLC-D011.


2015 ◽  
Vol 14 (4) ◽  
pp. 485-490 ◽  
Author(s):  
Mohammad Pourhassan-Moghaddam ◽  
Nosratollah Zarghami ◽  
Afshin Mohsenifar ◽  
Mohammad Rahmati-Yamchi ◽  
Hadis Daraee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document