scholarly journals Schizandrin A Inhibits Microglia-Mediated Neuroninflammation through Inhibiting TRAF6-NF-κB and Jak2-Stat3 Signaling Pathways

PLoS ONE ◽  
2016 ◽  
Vol 11 (2) ◽  
pp. e0149991 ◽  
Author(s):  
Fangjiao Song ◽  
Kewu Zeng ◽  
Lixi Liao ◽  
Qian Yu ◽  
Pengfei Tu ◽  
...  
Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 940
Author(s):  
Chi-Yu Lai ◽  
Kun-Yun Yeh ◽  
Chiu-Ya Lin ◽  
Yang-Wen Hsieh ◽  
Hsin-Hung Lai ◽  
...  

MicroRNA-21 (miR-21) is one of the most frequently upregulated miRNAs in liver diseases such as nonalcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC). However, mechanistic pathways that connect NAFLD and HCC remain elusive. We developed a doxycycline (Dox)-inducible transgenic zebrafish model (LmiR21) which exhibited an upregulation of miR-21 in the liver, which in turn induced the full spectrum of NAFLD, including steatosis, inflammation, fibrosis, and HCC, in the LmiR21 fish. Diethylnitrosamine (DEN) treatment led to accelerated liver tumor formation and exacerbated their aggressiveness. Moreover, prolonged miR-21 expression for up to ten months induced nonalcoholic steatohepatitis (NASH)-related HCC (NAHCC). Immunoblotting and immunostaining confirmed the presence of miR-21 regulatory proteins (i.e., PTEN, SMAD7, p-AKT, p-SMAD3, and p-STAT3) in human nonviral HCC tissues and LmiR21 models. Thus, we demonstrated that miR-21 can induce NAHCC via at least three mechanisms: First, the occurrence of hepatic steatosis increases with the decrease of ptenb, pparaa, and activation of the PI3K/AKT pathway; second, miR-21 induces hepatic inflammation (or NASH) through an increase in inflammatory gene expression via STAT3 signaling pathways, and induces liver fibrosis through hepatic stellate cell (HSC) activation and collagen deposition via TGF-β/Smad3/Smad7 signaling pathways; finally, oncogenic activation of Smad3/Stat3 signaling pathways induces HCC. Our LmiR21 models showed similar molecular pathology to the human cancer samples in terms of initiation of lipid metabolism disorder, inflammation, fibrosis and activation of the PI3K/AKT, TGF-β/SMADs and STAT3 (PTS) oncogenic signaling pathways. Our findings indicate that miR-21 plays critical roles in the mechanistic perspectives of NAHCC development via the PTS signaling networks.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wenxian Li ◽  
Di Wei ◽  
Zheng Zhu ◽  
Xiaomei Xie ◽  
Shuqin Zhan ◽  
...  

Chronic cerebral hypoperfusion (CCH) contributes to cognitive impairments, and hippocampal neuronal death is one of the key factors involved in this process. Dl-3-n-butylphthalide (D3NB) is a synthetic compound originally isolated from the seeds of Apium graveolens, which exhibits neuroprotective effects against some neurological diseases. However, the protective mechanisms of D3NB in a CCH model mimicking vascular cognitive impairment remains to be explored. We induced CCH in rats by a bilateral common carotid artery occlusion (BCCAO) operation. Animals were randomly divided into a sham-operated group, CCH 4-week group, CCH 8-week group, and the corresponding D3NB-treatment groups. Cultured primary hippocampal neurons were exposed to oxygen-glucose deprivation/reperfusion (OGD/R) to mimic CCH in vitro. We aimed to explore the effects of D3NB treatment on hippocampal neuronal death after CCH as well as its underlying molecular mechanism. We observed memory impairment and increased hippocampal neuronal apoptosis in the CCH groups, combined with inhibition of CNTF/CNTFRα/JAK2/STAT3 signaling, as compared with that of sham control rats. D3NB significantly attenuated cognitive impairment in CCH rats and decreased hippocampal neuronal apoptosis after BCCAO in vivo or OGD/R in vitro. More importantly, D3NB reversed the inhibition of CNTF/CNTFRα expression and activated the JAK2/STAT3 pathway. Additionally, JAK2/STAT3 pathway inhibitor AG490 counteracted the protective effects of D3NB in vitro. Our results suggest that D3NB could improve cognitive function after CCH and that this neuroprotective effect may be associated with reduced hippocampal neuronal apoptosis via modulation of CNTF/CNTFRα/JAK2/STAT3 signaling pathways. D3NB may be a promising therapeutic strategy for vascular cognitive impairment induced by CCH.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4787
Author(s):  
Katarzyna Papierska ◽  
Violetta Krajka-Kuźniak ◽  
Jarosław Paluszczak ◽  
Robert Kleszcz ◽  
Marcin Skalski ◽  
...  

The study aimed to evaluate the possible modulation of Nrf2, NF-ĸB and STAT3 signaling pathways in the colorectal cancer (CRC) cells line DLD-1 and HCT116 by secondary metabolites of lichens. An attempt was made to indicate the most promising targets in these signaling pathways. Attention was also paid to the effects of the compounds tested on CRC cells using anakoinosis—that is, simultaneous analysis of several signaling pathways. The effects of the tested natural compounds on the activity of selected transcriptional factors related to CRC were analyzed by Western blot and RT-PCR assays. The highest activity against CRC cells was shown by physodic and salazinic acids from the studied secondary metabolites of lichens. As a result, an increase in the activation of transcription factor Nrf2 and the expression of its selected target genes was observed. Physodic and salazinic acids induced the opposite effect in relation to the NF-κB and STAT3 pathways. These results confirmed our earlier observations that lichen-derived compounds have the ability to modulate signaling pathway networks. While caperatic acid affected Wnt/β-catenin to the most extent, salazinic acid was the most potent modulator of Nrf2, NF-κB and STAT3 pathways. Physodic acid seemed to affect all the investigated pathways.


Oncogene ◽  
2019 ◽  
Vol 38 (31) ◽  
pp. 5942-5958 ◽  
Author(s):  
S. J. Kim ◽  
S. Garcia-Recio ◽  
C. J. Creighton ◽  
C. M. Perou ◽  
J. M. Rosen

Biomolecules ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 528 ◽  
Author(s):  
Ayman M. Mahmoud ◽  
Ekram M. Desouky ◽  
Walaa G. Hozayen ◽  
May Bin-Jumah ◽  
El-Shaymaa El-Nahass ◽  
...  

Mesoporous silica nanoparticles (MSNs) represent a promising inorganic platform for multiple biomedical applications. Previous studies have reported MSNs-induced hepatic and renal toxicity; however, the toxic mechanism remains unclear. This study aimed to investigate MSNs-induced hepatic and nephrotoxicity and test the hypothesis that altered TLR4/MyD88/NF-κB, JAK2/STAT3, and Nrf2/ARE/HO-1 signaling pathways mediate oxidative stress, inflammation, and fibrosis induced by MSNs. Rats were administered 25, 50, 100, and 200 mg/kg MSNs for 30 days, and samples were collected for analyses. MSNs induced functional and histologic alterations, increased the levels of reactive oxygen species (ROS), lipid peroxidation and nitric oxide, suppressed antioxidants, and Nrf2/HO-1 signaling in the liver and kidney of rats. MSNs up-regulated the expression of liver and kidney TLR4, MyD88, NF-κB p65, and caspase-3 and increased serum pro-inflammatory cytokines. In addition, MSNs activated the JAK2/STAT3 signaling pathway, down-regulated peroxisome proliferator activated receptor gamma (PPARγ), and promoted fibrosis evidenced by the increased collagen expression and deposition. In conclusion, this study conferred novel information on the role of ROS and deregulated TLR4/MyD88/NF-κB, JAK2/STAT3, PPARγ, and Nrf2/ARE/HO-1 signaling pathways in MSNs hepatic and nephrotoxicity. These findings provide experimental evidence for further studies employing genetic and pharmacological strategies to evaluate the safety of MSNs for their use in nanomedicine.


2020 ◽  
Vol 35 (9) ◽  
pp. 991-997 ◽  
Author(s):  
Sung‐Lin Hu ◽  
Chien‐Chung Huang ◽  
Tzu‐Ting Tseng ◽  
Shan‐Chi Liu ◽  
Chun‐Hao Tsai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document