pathway networks
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 25)

H-INDEX

11
(FIVE YEARS 4)

2021 ◽  
Vol 12 ◽  
Author(s):  
Hongxiao Jiao ◽  
Miaomiao Zhang ◽  
Yuan Zhang ◽  
Yaogang Wang ◽  
Wei-Dong Li

As a marker for glomerular filtration, plasma cystatin C level is used to evaluate kidney function. To decipher genetic factors that control the plasma cystatin C level, we performed genome-wide association and pathway association studies using United Kingdom Biobank data. One hundred fifteen loci yielded p values less than 1 × 10−100, three genes (clusters) showed the most significant associations, including the CST8-CST9 cluster on chromosome 20, the SH2B3-ATXN2 gene region on chromosome 12, and the SHROOM3-CCDC158 gene region on chromosome 4. In pathway association studies, forty significant pathways had FDR (false discovery rate) and or FWER (family-wise error rate) ≤ 0.001: spermatogenesis, leukocyte trans-endothelial migration, cell adhesion, glycoprotein, membrane lipid, steroid metabolic process, and insulin signaling pathways were among the most significant pathways that associated with the plasma cystatin C levels. We also performed Genome-wide association studies for eGFR, top associated genes were largely overlapped with those for cystatin C.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4787
Author(s):  
Katarzyna Papierska ◽  
Violetta Krajka-Kuźniak ◽  
Jarosław Paluszczak ◽  
Robert Kleszcz ◽  
Marcin Skalski ◽  
...  

The study aimed to evaluate the possible modulation of Nrf2, NF-ĸB and STAT3 signaling pathways in the colorectal cancer (CRC) cells line DLD-1 and HCT116 by secondary metabolites of lichens. An attempt was made to indicate the most promising targets in these signaling pathways. Attention was also paid to the effects of the compounds tested on CRC cells using anakoinosis—that is, simultaneous analysis of several signaling pathways. The effects of the tested natural compounds on the activity of selected transcriptional factors related to CRC were analyzed by Western blot and RT-PCR assays. The highest activity against CRC cells was shown by physodic and salazinic acids from the studied secondary metabolites of lichens. As a result, an increase in the activation of transcription factor Nrf2 and the expression of its selected target genes was observed. Physodic and salazinic acids induced the opposite effect in relation to the NF-κB and STAT3 pathways. These results confirmed our earlier observations that lichen-derived compounds have the ability to modulate signaling pathway networks. While caperatic acid affected Wnt/β-catenin to the most extent, salazinic acid was the most potent modulator of Nrf2, NF-κB and STAT3 pathways. Physodic acid seemed to affect all the investigated pathways.


2021 ◽  
Vol 11 (7) ◽  
pp. 636
Author(s):  
Hyung-Suk Kim ◽  
Kyueng-Whan Min ◽  
Dong-Hoon Kim ◽  
Byoung-Kwan Son ◽  
Mi-Jung Kwon ◽  
...  

Nuclear receptor-binding SET domain protein (NSD), a histone methyltransferase, is known to play an important role in cancer pathogenesis. The WHSC1L1 (Wolf-Hirschhorn syndrome candidate 1-like 1) gene, encoding NSD3, is highly expressed in breast cancer, but its role in the development of breast cancer is still unknown. The purpose of this study was to analyze the survival rates and immune responses of breast cancer patients with high WHSC1L1 expression and to validate the results using gradient boosting machine (GBM) in breast cancer. We investigated the clinicopathologic parameters, proportions of immune cells, pathway networks and in vitro drug responses according to WHSC1L1 expression in 456, 1500 and 776 breast cancer patients from the Hanyang University Guri Hospital, METABRIC and TCGA, respectively. High WHSC1L1 expression was associated with poor prognosis, decreased CD8+ T cells and high CD274 expression (encoding PD-L1). In the pathway networks, WHSC1L1 was indirectly linked to the regulation of the lymphocyte apoptotic process. The GBM model with WHSC1L1 showed improved prognostic performance compared with the model without WHSC1L1. We found that VX-11e, CZC24832, LY2109761, oxaliplatin and erlotinib were effective in inhibiting breast cancer cell lines with high WHSC1L1 expression. High WHSC1L1 expression could play potential roles in the progression of breast cancer and targeting WHSC1L1 could be a potential strategy for the treatment of breast cancer.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0252052
Author(s):  
Hyung Suk Kim ◽  
Min Gyu Kim ◽  
Kyueng-Whan Min ◽  
Un Suk Jung ◽  
Dong-Hoon Kim

Matrix metalloproteinase-11 (MMP-11) promote cancer invasion and metastasis through degrading the extracellular matrix. Protein degradation by MMP-11 in tumor cells may progressively suppress cancer surveillance activities with blocking immune response in breast cancer. The aim of study is to analyze clinicopathological parameters, molecular interactions and anticancer immune response in patients with MMP-11 expression and to provide candidate target drugs. We investigated the clinicopathologic parameters, specific gene sets, tumor antigenicity, and immunologic relevance according to MMP-11 expression in 226 and 776 breast cancer patients from the Hanyang University Guri Hospital (HUGH) cohort and The Cancer Genome Atlas (TCGA) data, respectively. We analyzed pathway networks and in vitro drug response. High MMP-11 expression was associated with worse survival rate in breast cancer from HUGH cohort and TCGA data (all p < 0.05). In analysis of immunologic gene sets, high MMP-11 expression was related to low immune response such as CD8+T cell, CD4+T cell and B cell. In silico cytometry, there was a decrease of cancer testis antigen and low tumor infiltrating lymphocyte in patient with high MMP-11 expression: activated dendritic cell, CD8+T cell, CD4+ memory T cell, and memory B cell. In pathway networks, MMP-11 was linked to the pathways including low immune response, response to growth hormone and catabolic process. We found that pictilisib and AZ960 effectively inhibited the breast cancer cell lines with high MMP-11 expression. Strategies making use of MMP-11-related hub genes could contribute to better clinical management/research for patients with breast cancer.


2021 ◽  
Author(s):  
Sagnik Sen ◽  
Ashmita Dey ◽  
Ujjwal Maulik

Abstract Parkinson's Disease is a common neurodegenerative disease. The differential expression of alpha-synuclein within Lewy Bodies leads to this disease. Some missense mutations of alpha-synuclein may resultant in functional aberrations. In this study, our objective is to verify the functional adaptation due to early and late-onset mutation which can trigger or control the rate of alpha-synuclein aggregation. In this regard, we have proposed a computational model to study the difference and/or similarities among the Wild type alpha-synuclein and two mutations G51D and E46K which are responsible for slow and fast aggregation respectively. Evolutionary sequence space analysis is also performed in this experiment. Subsequently, a comparative study has been performed between structural information and sequence space outcomes. The study shows the structural variability among the selected subtypes. This information assists inter pathway modeling due to mutational aberrations. Based on the structural variability, we have identified the protein-protein interaction partners for each protein that helps to increase the robustness of the inter-pathway connectivity. As per the inter-pathway networks, drug addiction has clear impacts on both the mutations i.e., G51D-slow, and E46K-fast and can be considered as the reason for early-onset Parkinson’s Disease. Finally, three top pathways associated with drug addiction viz., Amphetamine addiction, alcoholism, and Cocaine addiction show the higher influence in the mutated pathway networks based on the PageRank Algorithm where Dopaminergic Synapse system is also found within the same list in terms of Parkinson’s Disease pathogenicity.


Author(s):  
Wei Zhou ◽  
Ziyi Chen ◽  
Aiping Lu ◽  
Zhigang Liu

Citri Reticulatae Pericarpium (CRP), also known as Chenpi in Chinese, is the dry mature peel of Citrus reticulata Blanco or its cultivated varieties. CRP as the health-care food and dietary supplement has been widely used in various diseases. However, the potential pharmacological mechanisms of CRP to predict and treat various diseases have not yet been fully elucidated. A systems pharmacology-based approach is developed by integrating absorption, distribution, metabolism, and excretion screening, multiple target fishing, network pharmacology, as well as pathway analysis to comprehensively dissect the potential mechanism of CRP for therapy of various diseases. The results showed that 39 bioactive components and 121 potential protein targets were identified from CRP. The 121 targets are closely related to various diseases of the cardiovascular system, respiratory system, gastrointestinal system, etc. These targets are further mapped to compound-target, target-disease, and target-pathway networks to clarify the therapeutic mechanism of CRP at the system level. The current study sheds light on a promising way for promoting the discovery of new botanical drugs.


2021 ◽  
Vol 30 ◽  
pp. 096368972110513
Author(s):  
Xiao Cen ◽  
Xuefeng Pan ◽  
Bo Zhang ◽  
Wei Huang ◽  
Xiner Xiong ◽  
...  

In bone tissue engineering, tailored biomaterials mimicking mesenchymal stem cells (MSCs) niche could regulate cell behavior and fate decision. The mechanisms, however, remain obscure. Recently, increasing evidence has shown that non-coding RNAs (ncRNAs) are critical modulators of the mechano-induced MSCs’ responses. Mechanosensitive ncRNAs could convert various physical forces into biochemical signals, and orchestrate signaling networks that regulate the osteogenic differentiation of MSCs in their unique microenvironment. In this review, we focus on the mechanosensitive ncRNAs which could interpret mechanical stimuli during the osteogenesis of MSCs, summarize the signaling pathway networks by which these ncRNAs drive MSCs fate, and point out the limitations and the areas waiting for further exploration.


2020 ◽  
Vol 49 (D1) ◽  
pp. D1452-D1463 ◽  
Author(s):  
Marcela K Tello-Ruiz ◽  
Sushma Naithani ◽  
Parul Gupta ◽  
Andrew Olson ◽  
Sharon Wei ◽  
...  

Abstract Gramene (http://www.gramene.org), a knowledgebase founded on comparative functional analyses of genomic and pathway data for model plants and major crops, supports agricultural researchers worldwide. The resource is committed to open access and reproducible science based on the FAIR data principles. Since the last NAR update, we made nine releases; doubled the genome portal's content; expanded curated genes, pathways and expression sets; and implemented the Domain Informational Vocabulary Extraction (DIVE) algorithm for extracting gene function information from publications. The current release, #63 (October 2020), hosts 93 reference genomes—over 3.9 million genes in 122 947 families with orthologous and paralogous classifications. Plant Reactome portrays pathway networks using a combination of manual biocuration in rice (320 reference pathways) and orthology-based projections to 106 species. The Reactome platform facilitates comparison between reference and projected pathways, gene expression analyses and overlays of gene–gene interactions. Gramene integrates ontology-based protein structure–function annotation; information on genetic, epigenetic, expression, and phenotypic diversity; and gene functional annotations extracted from plant-focused journals using DIVE. We train plant researchers in biocuration of genes and pathways; host curated maize gene structures as tracks in the maize genome browser; and integrate curated rice genes and pathways in the Plant Reactome.


Sign in / Sign up

Export Citation Format

Share Document