scholarly journals Chalcone synthase (CHS) family members analysis from eggplant (Solanum melongena L.) in the flavonoid biosynthetic pathway and expression patterns in response to heat stress

PLoS ONE ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. e0226537
Author(s):  
Xuexia Wu ◽  
Shengmei Zhang ◽  
Xiaohui Liu ◽  
Jing Shang ◽  
Aidong Zhang ◽  
...  
Horticulturae ◽  
2018 ◽  
Vol 4 (4) ◽  
pp. 30
Author(s):  
Sutapa Roy ◽  
Sanjay Singh ◽  
Douglas Archbold

Two cultivars of F. vesca, red-fruited Baron Solemacher (BS) and white-fruited Pineapple Crush (PC), were studied to compare and contrast the quantitative accumulation of major polyphenols and related biosynthetic pathway gene expression patterns during fruit development and ripening. Developing PC fruit showed higher levels of hydroxycinnamic acids in green stages and a greater accumulation of ellagitannins in ripe fruit in comparison to BS. In addition to anthocyanin, red BS fruit had greater levels of flavan-3-ols when ripe than PC. Expression patterns of key structural genes and transcription factors of the phenylpropanoid/flavonoid biosynthetic pathway, an abscisic acid (ABA) biosynthetic gene, and a putative ABA receptor gene that may regulate the pathway, were also analyzed during fruit development and ripening to determine which genes exhibited differences in expression and when such differences were first evident. Expression of all pathway genes differed between the red BS and white PC at one or more times during development, most notably at ripening when phenylalanine ammonia lyase 1 (PAL1), chalcone synthase (CHS), flavanone-3′-hydroxylase (F3′H), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS), and UDP:flavonoid-O-glucosyltransferase 1 (UFGT1) were significantly upregulated in the red BS fruit. The transcription factors MYB1 and MYB10 did not differ substantially between red and white fruit except at ripening, when both the putative repressor MYB1 and promoter MYB10 were upregulated in red BS but not white PC fruit. The expression of ABA-related gene 9-cis-epoxycarotenoid dioxygenase 1 (NCED1) was higher in red BS fruit but only in the early green stages of development. Thus, a multigenic effect at several points in the phenylpropanoid/flavonoid biosynthetic pathway due to lack of MYB10 upregulation may have resulted in white PC fruit.


PLoS ONE ◽  
2015 ◽  
Vol 10 (3) ◽  
pp. e0119054 ◽  
Author(s):  
Wei Sun ◽  
Xiangyu Meng ◽  
Lingjie Liang ◽  
Wangshu Jiang ◽  
Yafei Huang ◽  
...  

2019 ◽  
Author(s):  
Xuexia Wu ◽  
Dingshi Zha

Abstract Background Enzymes of chalcone synthase (CHS) family participate in the synthesis of a series of secondary metabolites in plants, fungi and bacteria. Some of these metabolites have a wide variety of biological functions such as flower pigmentation, protection against UV radiation, pathogen defense, auxin transport and pollen fertility. CHS also showed significant correlation to the accumulation patterns of anthocyanin. The peel color mainly determined by the content of anthocyanin, is a majority economic trait for eggplant affected by heat stress. Results A total of 7 CHS ( SmCHS1-7 ) putative genes were identified in genome-wide of eggplant ( S. melongena L . ). The SmCHS genes distribute on 7 scaffolds and were classified into 3 clusters. Phylogenetic relationships analysis showed that 73 CHS genes from 7 Solanaceae species were classified into 10 groups. SmCHS5 , SmCHS6 and SmCHS7 were continuously down-regulated under 38℃ and 45℃ treatment, while SmCHS4 was up-regulated under 38℃ but little change at 45℃ in peel. Expression profiles of anthocyanin biosynthesis key genes families showed that the PAL, 4CL and AN11 genes were mainly expressed in all five tissues. CHI, F3H, F3’5’H, DFR, 3GT and bHLH1 genes were expressed in flower and peel. Under heat stress, 52 key genes expression level were reduced under heat stress. By contrast, expression patterns of eight key genes similar to SmCHS4 up-regulated at the 38℃-3h. Conclusions Comparative analysis of putative CHS protein biochemical characteristics, cis -regulatory elements, regulatory network revealed that SmCHS genes family have conservation gene structure and functional diversification. SmCHS showed two or more expression patterns and execute multiple functions to regulate anthocyanin content. Combined with regulatory networks, it is possible to further understand the regulation mechanism of peel color in eggplant.


2019 ◽  
Author(s):  
Xuexia Wu ◽  
Shengmei Zhang ◽  
Xiaohui Liu ◽  
Jing Shang ◽  
Aidong Zhang ◽  
...  

AbstractEnzymes of chalcone synthase (CHS) family participate in the synthesis of a series of secondary metabolites in plants, fungi and bacteria. CHS showed significant correlation to the accumulation patterns of anthocyanin. The peel color mainly determined by the content of anthocyanin, is a majority economic trait for eggplant affected by heat stress. A total of 7 CHS(SmCHS1-7) putative genes were identified in genome-wide of eggplant (S. melongena L.). The SmCHS genes distribute on 7 scaffolds and were classified into 3 clusters. Phylogenetic relationships analysis showed that 73 CHS genes from 7 Solanaceae species were classified into 10 groups. SmCHS5, SmCHS6 and SmCHS7 were continuously down-regulated under 38°C and 45°C treatment, while SmCHS4 was up-regulated under 38°C but little change at 45°C in peel. Expression profiles of anthocyanin biosynthesis key genes families showed that the PAL, 4CL and AN11 genes were mainly expressed in all five tissues. CHI, F3H, F3’5’H, DFR, 3GT and bHLH1 genes were expressed in flower and peel. Under heat stress, 52 key genes expression level were reduced under heat stress. By contrast, expression patterns of eight key genes similar to SmCHS4 up-regulated at the 38°C-3h. Comparative analysis of putative CHS protein biochemical characteristics, cis-regulatory elements, regulatory network revealed that SmCHS genes family have conservation gene structure and functional diversification. SmCHS showed two or more expression patterns and execute multiple functions to regulate anthocyanin content. Combined with regulatory networks, it is possible to further understand the regulation mechanism of peel color in eggplant.


2021 ◽  
Vol 19 (1) ◽  
pp. 44-57
Author(s):  
Sirine Werghi ◽  
Charfeddine Gharsallah ◽  
Nishi Kant Bhardwaj ◽  
Hatem Fakhfakh ◽  
Faten Gorsane

AbstractDuring recent decades, global warming has intensified, altering crop growth, development and survival. To overcome changes in their environment, plants undergo transcriptional reprogramming to activate stress response strategies/pathways. To evaluate the genetic bases of the response to heat stress, Conserved DNA-derived Polymorphism (CDDP) markers were applied across tomato genome of eight cultivars. Despite scattered genotypes, cluster analysis allowed two neighbouring panels to be discriminate. Tomato CDDP-genotypic and visual phenotypic assortment permitted the selection of two contrasting heat-tolerant and heat-sensitive cultivars. Further analysis explored differential expression in transcript levels of genes, encoding heat shock transcription factors (HSFs, HsfA1, HsfA2, HsfB1), members of the heat shock protein (HSP) family (HSP101, HSP17, HSP90) and ascorbate peroxidase (APX) enzymes (APX1, APX2). Based on discriminating CDDP-markers, a protein functional network was built allowing prediction of candidate genes and their regulating miRNA. Expression patterns analysis revealed that miR156d and miR397 were heat-responsive showing a typical inverse relation with the abundance of their target gene transcripts. Heat stress is inducing a set of candidate genes, whose expression seems to be modulated through a complex regulatory network. Integrating genetic resource data is required for identifying valuable tomato genotypes that can be considered in marker-assisted breeding programmes to improve tomato heat tolerance.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 391
Author(s):  
Xitong Fei ◽  
Yichen Qi ◽  
Yu Lei ◽  
Shujie Wang ◽  
Haichao Hu ◽  
...  

Green prickly ash (Zanthoxylum armatum) and red prickly ash (Zanthoxylum bungeanum) fruit have unique flavor and aroma characteristics that affect consumers’ purchasing preferences. However, differences in aroma components and relevant biosynthesis genes have not been systematically investigated in green and red prickly ash. Here, through the analysis of differentially expressed genes (DEGs), differentially abundant metabolites, and terpenoid biosynthetic pathways, we characterize the different aroma components of green and red prickly ash fruits and identify key genes in the terpenoid biosynthetic pathway. Gas chromatography-mass spectrometry (GC-MS) was used to identify 41 terpenoids from green prickly ash and 61 terpenoids from red prickly ash. Piperitone was the most abundant terpenoid in green prickly ash fruit, whereas limonene was most abundant in red prickly ash. Intergroup correlation analysis and redundancy analysis showed that HDS2, MVK2, and MVD are key genes for terpenoid synthesis in green prickly ash, whereas FDPS2 and FDPS3 play an important role in the terpenoid synthesis of red prickly ash. In summary, differences in the composition and content of terpenoids are the main factors that cause differences in the aromas of green and red prickly ash, and these differences reflect contrasting expression patterns of terpenoid synthesis genes.


2018 ◽  
Author(s):  
Tomáš Pluskal ◽  
Michael P. Torrens-Spence ◽  
Timothy R. Fallon ◽  
Andrea De Abreu ◽  
Cindy H. Shi ◽  
...  

AbstractFor millennia, humans have used plants for medicinal purposes. However, our limited understanding of plant biochemistry hinders the translation of such ancient wisdom into modern pharmaceuticals1. Kava (Piper methysticum) is a medicinal plant native to the Polynesian islands with anxiolytic and analgesic properties supported by over 3,000 years of traditional use as well as numerous recent clinical trials2–5. The main psychoactive principles of kava, kavalactones, are a unique class of polyketide natural products known to interact with central nervous system through mechanisms distinct from those of the prescription psychiatric drugs benzodiazepines and opioids6,7. Here we reportde novoelucidation of the biosynthetic pathway of kavalactones, consisting of seven specialized metabolic enzymes. Based on phylogenetic and crystallographic analyses, we highlight the emergence of two paralogous styrylpyrone synthases, both of which have neofunctionalized from an ancestral chalcone synthase to catalyze the formation of the kavalactone scaffold. Structurally diverse kavalactones are then biosynthesized by subsequent regio- and stereo-specific tailoring enzymes. We demonstrate the feasibility of engineering heterologous production of kavalactones and their derivatives in bacterial, yeast, and plant hosts, thus opening an avenue towards the development of new psychiatric therapeutics for anxiety disorders, which affect over 260 million people globally8.


Sign in / Sign up

Export Citation Format

Share Document