scholarly journals Do extreme summers increase blood vitamin D (25-hydroxyvitamin D) levels?

PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242230
Author(s):  
Frank Bernhard Kraus ◽  
Daniel Medenwald ◽  
Beatrice Ludwig-Kraus

Climate change is expected to increase the frequency of extreme weather events, such as extended heat waves and droughts in the northern hemisphere. Besides affecting ecosystems worldwide, these changes in climate patterns will also affect the environmental health of human populations. While the medical community is mostly concerned with the negative impact of climate change, there might also be some beneficial effects. In this study we used laboratory data from a large university clinic in Germany (n = 13 406), to test for any detectable impact of two extreme summers on Vitamin-D [25(OH)D] plasma concentrations over a six year period (2014–2019). For the two years with extreme summers (2018 and 2019) the 25(OH)D plasma concentrations were significantly higher than in the previous four years (p < 0.001). A time series analysis (autoregressive term, AR, φ = 0.84, with an AR of one indicating a persistent effect) showed that 25(OH)D concentrations rise by 0.04 nmol/l (95% CI: 0.04–0.05 nmol/l) per hour of sunshine. The incidence of vitamin D deficiency was generally high (60% for 2014–2017) but dropped by 10% in 2018 and 2019. As such, the summers of 2018 and 2019, which are among the hottest and driest in Germany since the start of modern climate recordings, had a measurable positive effect on 25(OH)D plasma levels of the examined population. Given that 25(OH)D deficiency is widespread in higher latitudes, this implies that while mostly considered negative, climate change might also confer some health benefits with regard to vitamin D related medical conditions.

2021 ◽  
Vol 145 (7-8) ◽  
pp. 311-321
Author(s):  
Damir Ugarković ◽  
Nenad Potočić ◽  
Marko Orešković ◽  
Krešimir Popić ◽  
Mladen Ognjenović ◽  
...  

Tree dieback is a complex process involving negative impact of various abiotic, biotic and anthropogenic factors. Climate change, comprising all those effects, is generally considered as the largest threat to forest ecosystems in Europe. Although the scale of climate change impacts on forests is not yet fully understood, especially on the regional or species level, significant damage seems to be caused by weather extremes, such as drought and strong winds. With the expected increase in the number, length, and/or intensity of extreme weather events in Croatia, research into the causes of tree mortality is both important and timely. Silver fir is the most damaged and endangered conifer tree species in Croatia. The dieback of silver fir can be attributed to various factors, therefore the goals of this research were to determine the mortality of silver fir trees (by number and volume) for various causes of mortality, among which the climatic and structural parameters were of most interest. The twenty-year data for tree mortality in pure silver fir stands in the area of Fužine (Gorski kotar, Croatia) were collected and analysed. The largest number and volume of dead trees was caused by complex (multiple causes) dieback in the overstorey (0,75 N/ha, 2,35 m<sup>3</sup>/ha), and the smallest (0,17 N/ha, 0,02 m<sup>3</sup>/ha) by dieback of supressed trees. No significant differences were determined regarding the timing of tree death for different causes of mortality. Climatic parameters (drought, air temperature, PET) and structural parameters of the stands (tree DBH, social position, crown diameter, shading, physiological maturity) as well as plot inclination were found to be the factors of a significant influence on the mortality of silver fir trees.


2020 ◽  
Vol 32 (1) ◽  
pp. 154-160
Author(s):  
Roberto Buizza

Climate change is real, and we, humans, are responsible for it. Its impact is already evident, both on the Earth system (global warming, sea-level rise, sea-ice melting, more intense and frequent extreme weather events such as heat waves and fires) and on people (famines, health issues, migrations, political tensions and conflicts). We need immediate and concrete mitigation actions aiming to reduce greenhouse gases emissions, and adaptation actions to be able to cope with the increasing changing climate. We have to reach zero-net greenhouse gases emissions as soon as possible, by reducing emissions by at least 5% a year, starting from now. Otherwise the climate change impact will become more and more severe: it will induce more injustice, and it will have a major impact on people health. We have the resources and the technologies to deal with it: we must have the courage to change and transform and deal with it. Addressing climate change is not impossible: to the contrary, it is a ‘possible mission’.


2021 ◽  
Vol 7 (4) ◽  
pp. 19-27
Author(s):  
Saifuddin Soz ◽  
Dhananjay Mankar

Climate change is already bringing tremendous influence on people’s lives, particularly the underprivileged. It’s already visible in a variety of ways. In recent decades, Asia and the Pacific have seen consistent warming trends as well as more frequent and powerful extreme weather events such as droughts, cyclones, floods, and hailstorms. This study was done in Ajmer District of Rajasthan, to find out the climate variation in the last 10 years. The study describes the effects due to climate change on the livelihoods of the people, so a descriptive research design was used for the study to find out the impact of climate change on rural livelihood in central Rajasthan. The study is based on a large representative of sample, quantitative data was collected to gain an idea of the impact on the livelihoods due to climate change at the household level. It shows the negative impact of climate change on rural livelihood which forced the people to change their livelihood directly or indirectly. It was found that climate change had an impact on people’s lives and people do understand the variation in climate change in terms of changes in the weather, unseasonal rain, and drought.


Author(s):  
Radu Radoi ◽  
Ioan Pavel ◽  
Corneliu Cristescu ◽  
Liliana Dumitrescu

Fossil fuels are an exhaustible resource on Earth, and their use pollutes the environment massively. The population of the planet has grown a lot, and for the production of domestic hot water, to ensure a decent standard of living, it is necessary to consume increasing quantities of fossil fuels. The very high level of greenhouse gases released into the atmosphere leads to an increase in average of annual temperature and climate change. Climate change is manifested by the melting of the ice caps, which has the consequence of increasing the level of the seas and oceans. Climate change also leads to extreme weather events such as floods, heat waves or the appearance of arid areas. Risks to human health have increased through deaths caused by heat or by changing the way some diseases are spread. Risks also exist for flora and wildlife due to rapid climate change.Many species of animals migrate, and other species of animals and plants are likely to disappear. Climate change also leads to costs for society and the economy due to damage to property and infrastructure, which have been more than 90 billion euros in the last 30 years, just because of the floods. In order to reduce the effects of environmental pollution, ecological energy production solutions need to be expanded. The article presents the creation of an experimental stand of a Solar - TLUD stove combined system for the production of domestic hot water in a sustainable way. TLUD is the acronym for "Top-Lit UpDraft". The advantage of the combined heat system is that it can provide thermal energy both during the day and at night. If the atmospheric conditions are unfavorable (clouds, fog) and do not allow the water to be heated only with the solar panel, TLUD gas stove can be used to supplement the energy. The TLUD stove has low Carbon Monoxide (CO) and Particulate Matter (PM) emissions. After gasification, about 10% of the carbon contained in the biomass is thermally stabilized and can be used as a "biochar" in agriculture or it can be burnt completely, resulting in very little ash. The stand is composed of a solar thermal panel, a TLUD stove, a boiler for hot water storage and an automation system with circulation pumps and temperature sensors. To record the experimental results, a data acquisition board was used, with which data were recorded from a series of temperature and flow transducers located in the installation. Experimental results include diagrams for temperature variation, available energy and heat accumulated in the boiler. Keywords: combined thermal system, TLUD stove, domestic hot water, solar thermal panel, data aquisition system


Author(s):  
Costas A. Varotsos ◽  
Yuri A. Mazei

There is increasing evidence that extreme weather events such as frequent and intense cold spells and heat waves cause unprecedented deaths and diseases in both developed and developing countries. Thus, they require extensive and immediate research to limit the risks involved. Average temperatures in Europe in June–July 2019 were the hottest ever measured and attributed to climate change. The problem, however, of a thorough study of natural climate change is the lack of experimental data from the long past, where anthropogenic activity was then very limited. Today, this problem can be successfully resolved using, inter alia, biological indicators that have provided reliable environmental information for thousands of years in the past. The present study used high-resolution quantitative reconstruction data derived from biological records of Lake Silvaplana sediments covering the period 1181–1945. The purpose of this study was to determine whether a slight temperature change in the past could trigger current or future intense temperature change or changes. Modern analytical tools were used for this purpose, which eventually showed that temperature fluctuations were persistent. That is, they exhibit long memory with scaling behavior, which means that an increase (decrease) in temperature in the past was always followed by another increase (decrease) in the future with multiple amplitudes. Therefore, the increase in the frequency, intensity, and duration of extreme temperature events due to climate change will be more pronounced than expected. This will affect human well-being and mortality more than that estimated in today’s modeling scenarios. The scaling property detected here can be used for more accurate monthly to decadal forecasting of extreme temperature events. Thus, it is possible to develop improved early warning systems that will reduce the public health risk at local, national, and international levels.


Plants ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 34 ◽  
Author(s):  
Ali Raza ◽  
Ali Razzaq ◽  
Sundas Mehmood ◽  
Xiling Zou ◽  
Xuekun Zhang ◽  
...  

Agriculture and climate change are internally correlated with each other in various aspects, as climate change is the main cause of biotic and abiotic stresses, which have adverse effects on the agriculture of a region. The land and its agriculture are being affected by climate changes in different ways, e.g., variations in annual rainfall, average temperature, heat waves, modifications in weeds, pests or microbes, global change of atmospheric CO2 or ozone level, and fluctuations in sea level. The threat of varying global climate has greatly driven the attention of scientists, as these variations are imparting negative impact on global crop production and compromising food security worldwide. According to some predicted reports, agriculture is considered the most endangered activity adversely affected by climate changes. To date, food security and ecosystem resilience are the most concerning subjects worldwide. Climate-smart agriculture is the only way to lower the negative impact of climate variations on crop adaptation, before it might affect global crop production drastically. In this review paper, we summarize the causes of climate change, stresses produced due to climate change, impacts on crops, modern breeding technologies, and biotechnological strategies to cope with climate change, in order to develop climate resilient crops. Revolutions in genetic engineering techniques can also aid in overcoming food security issues against extreme environmental conditions, by producing transgenic plants.


Physiology ◽  
2019 ◽  
Vol 34 (2) ◽  
pp. 86-100 ◽  
Author(s):  
Jonathon H. Stillman

A consequence of climate change is the increased frequency and severity of extreme heat waves. This is occurring now as most of the warmest summers and most intense heat waves ever recorded have been during the past decade. In this review, I describe the ways in which animals and human populations are likely to respond to increased extreme heat, suggest how to study those responses, and reflect on the importance of those studies for countering the devastating impacts of climate change.


Author(s):  
Shawna Ross

This article considers the pedagogical implications of climate change and other environmental catastrophes of the Anthropocene, the new geological epoch identified by climate scientists. In the Anthropocene, the human species has become the most significant force shaping Earth’s geosphere and is responsible for a number of anxiety-producing effects beyond the rise of global temperatures. As erratic weather patterns and extreme weather events have increased, climatologists have been perfecting new methods of single-event attribution capable of linking particular adverse weather events (including droughts, heat waves, flooding tornadoes, and hurricanes) directly to climate change. To provide a concrete example of those universal trends, the author applies her experiences in teaching in Texas, which is strongly marked by long-term forces of anthropogenic environmental devastation (such as the northward migration of the oak trees and alterations in the lithosphere caused by oil extraction). It has also been impacted by hurricanes, floods, and freezes that delayed the onset of the Fall 2017 and Spring 2018 semesters and, in many cases, damaged or destroyed her students’ homes at Texas A&M. The article recounts the strategies that her learning community used to adjust to these exigencies and then offers suggestions for adapting these strategies to other locales.


Author(s):  
. Shilpa ◽  
Priyanka Bijalwan

Climate change is one of the global challenges faced by the mankind today with the continuously rising temperature, triggering a host of extreme weather events such as heat waves, drought, and flooding. These climate induced challenges are manifesting themselves rapidly, causing socio-economic insecurities and health challenges, particularly in marginalized communities. There is increasing evidence of indirect associations between climate change and the rise in the rates of malnutrition, poor health, hunger and starvation, as well as food and water insecurity. In addition, climate-change impacts have put an additional pressure on already stressed natural resource base, reducing the resilience of agro-ecosystems that are, in part, providing food and nutritional security in rural communities. Tackling these challenges requires a paradigm shift from the current incremental adaptation strategies towards transformative alternatives that also place an equal emphasis on human nutrition and health, as well as environmental sustainability. In the context of marginalized farming communities, a transformative adaptation strategy is defined as one that causes a disruptive, but desirable and sustainable change to the social– ecological state of the system. In the context of this paper, the inclusion of adaptable nutrient dense vegetable crops into marginalized agricultural systems and dominant food systems is considered part of transformative adaptation.


2021 ◽  
Vol 18 (2) ◽  
pp. 169-174
Author(s):  
L. A. Suplotova ◽  
V. A. Avdeeva ◽  
L. Y. Rozhinskaya

The influence of obesity on human health, as a multifactorial and multigenic disorder, is a rather complex, interdisciplinary and at the same time extremely urgent problem of modern society. Vitamin D deficiency is one of the consequences of obesity that negatively affects a person’s life expectancy. Vitamin D deficiency is rightfully considered a silent, non-infectious metabolic pandemic of the 21st century. Its significant role in the functioning of the human body is deep and multifaceted, since vitamin D is an integral regulator of the transcriptional activity of genes that control 3–5% of the human genome. There are ongoing discussions among experts in the medical community about the negative impact of obesity on 25 (OH) D levels, and the opposite hypothesis is also being discussed, where vitamin D deficiency is considered an independent risk factor for obesity. Both external causes of the formation of vitamin D deficiency against the background of excessive deposition of adipose tissue and internal metabolic processes underlying the pathogenetic association are analyzed two pathological conditions.


Sign in / Sign up

Export Citation Format

Share Document