scholarly journals Weaning differentially affects mitochondrial function, oxidative stress, inflammation and apoptosis in normal and low birth weight piglets

PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247188
Author(s):  
Aliny K. Novais ◽  
Karine Deschêne ◽  
Yan Martel-Kennes ◽  
Caroline Roy ◽  
Jean-Paul Laforest ◽  
...  

Weaning is associated with increased occurrence of infections and diseases in piglets. Recent findings indicate that weaning induces mitochondrial dysfunction and oxidative stress conditions that more severely impact smaller piglets. The objective of this study was to characterize the molecular mechanisms underlying these physiological consequences and the relation with systemic inflammatory status in both normal and low birth weight (NBW and LBW) piglets throughout the peri-weaning period. To conduct the study, 30 sows were inseminated, and specific piglets from their litters were assigned to one of two experimental groups: NBW (n = 60, 1.73 ± 0.01 kg,) and LBW piglets weighing less than 1.2 kg (n = 60, 1.01 ± 0.01 kg). Then, 10 piglets from each group were selected at 14, 21 (weaning), 23, 25, 29 and 35 days of age to collect organ and plasma samples. Specific porcine RT2 Profiler™ PCR Arrays related to mitochondrial function, oxidative stress, inflammation and apoptosis processes were first used to target genes that are modulated after weaning in NBW piglets (d 23 and d 35 vs. d 14). Expression of selected genes was evaluated by quantitative PCR. These analyses revealed that expression of inflammatory genes CXCL10 and CCL19 increased after weaning in intestinal mucosa, while expression of genes encoding subunits of the mitochondrial respiratory chain was downregulated in liver and kidney of both groups. Interestingly, major modulators of mitophagy (BNIP3), cell survival (BCL2A1) and antioxidant defense system (TXNRD2, GPx3, HMOX1) were found to be highly expressed in NBW piglets. The systemic levels of TNF-α and IL1-β significantly increased following weaning and were higher in NBW piglets. These results provide novel information about the molecular origin of mitochondrial dysfunction and oxidative stress observed in weaned piglets and suggest that clearance of dysfunctional mitochondria, antioxidant defenses and inflammatory response are compromised in LBW piglets.

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Nora E. Gray ◽  
Jonathan A. Zweig ◽  
Donald G. Matthews ◽  
Maya Caruso ◽  
Joseph F. Quinn ◽  
...  

Centella asiatica has been used for centuries to enhance memory. We have previously shown that a water extract of Centella asiatica (CAW) protects against the deleterious effects of amyloid-β (Aβ) in neuroblastoma cells and attenuates Aβ-induced cognitive deficits in mice. Yet, the neuroprotective mechanism of CAW has yet to be thoroughly explored in neurons from these animals. This study investigates the effects of CAW on neuronal metabolism and oxidative stress in isolated Aβ-expressing neurons. Hippocampal neurons from amyloid precursor protein overexpressing Tg2576 mice and wild-type (WT) littermates were treated with CAW. In both genotypes, CAW increased the expression of antioxidant response genes which attenuated the Aβ-induced elevations in reactive oxygen species (ROS) and lipid peroxidation in Tg2576 neurons. CAW also improved mitochondrial function in both genotypes and increased the expression of electron transport chain enzymes and mitochondrial labeling, suggesting an increase in mitochondrial content. These data show that CAW protects against mitochondrial dysfunction and oxidative stress in Aβ-exposed hippocampal neurons which could contribute to the beneficial effects of the extract observed in vivo. Since CAW also improved mitochondrial function in the absence of Aβ, these results suggest a broader utility for other conditions where neuronal mitochondrial dysfunction occurs.


2020 ◽  
Vol 2020 ◽  
pp. 1-20 ◽  
Author(s):  
Ana Paula Vargas Visentin ◽  
Rafael Colombo ◽  
Ellen Scotton ◽  
Débora Soligo Fracasso ◽  
Adriane Ribeiro da Rosa ◽  
...  

The prevalence of psychiatric disorders has increased in recent years. Among existing mental disorders, major depressive disorder (MDD) has emerged as one of the leading causes of disability worldwide, affecting individuals throughout their lives. Currently, MDD affects 15% of adults in the Americas. Over the past 50 years, pharmacotherapy, psychotherapy, and brain stimulation have been used to treat MDD. The most common approach is still pharmacotherapy; however, studies show that about 40% of patients are refractory to existing treatments. Although the monoamine hypothesis has been widely accepted as a molecular mechanism to explain the etiology of depression, its relationship with other biochemical phenomena remains only partially understood. This is the case of the link between MDD and inflammation, mitochondrial dysfunction, and oxidative stress. Studies have found that depressive patients usually exhibit altered inflammatory markers, mitochondrial membrane depolarization, oxidized mitochondrial DNA, and thus high levels of both central and peripheral reactive oxygen species (ROS). The effect of antidepressants on these events remains unclear. Nevertheless, the effects of ROS on the brain are well known, including lipid peroxidation of neuronal membranes, accumulation of peroxidation products in neurons, protein and DNA damage, reduced antioxidant defenses, apoptosis induction, and neuroinflammation. Antioxidants such as ascorbic acid, tocopherols, and coenzyme Q have shown promise in some depressive patients, but without consensus on their efficacy. Hence, this paper provides a review of MDD and its association with inflammation, mitochondrial dysfunction, and oxidative stress and is aimed at thoroughly discussing the putative links between these events, which may contribute to the design and development of new therapeutic approaches for patients.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Jorge Gamboa ◽  
Alp Ikizler ◽  
Chang Yu ◽  
Bruce Damon ◽  
Nancy Brown ◽  
...  

Abstract Background and Aims Patients with chronic kidney disease (CKD) suffer from frailty and sarcopenia. Skeletal muscle mitochondria are important for physical function and could be a target to prevent frailty and sarcopenia. Method We tested the hypothesis that mitochondrial function worsens with the progression of CKD. We evaluated the interaction between mitochondrial function and co-existing comorbidities such as impaired physical performance, intermuscular adipose tissue (IMAT) infiltration, inflammation, and oxidative stress. We evaluated in-vivo thigh mitochondrial function using 31-phosphorus magnetic resonance spectroscopy to obtain the phosphocreatine (PCr) recovery constant, a measure of mitochondrial function. We measured physical performance using the six-minute walk test, IMAT infiltration and markers of inflammation in plasma. Results Sixty-three participants were studied including controls (n=21), patients with CKD not on maintenance hemodialysis (MHD; n=20), and patients on MHD (n=22). We found a prolonged PCr recovery constant in patients on MHD (53.3 (43.4, 70.1) seconds) and with CKD not on MHD (46.3 (40,0, 49.9) seconds) compared to controls (34.2 (28.8, 43.7) seconds) (p<0.001 between groups), Figure 1A-C. Mitochondrial dysfunction was associated with poor physical performance, greater IMAT, and increased markers of inflammation Figure 2A-C. Conclusion Mitochondrial function worsens with the progression of CKD and correlates with physical function, IMAT, inflammation, and oxidative stress. These data suggest that therapeutic approaches targeted at mitochondrial dysfunction and dynamics could prevent or treat frailty and sarcopenia in patients CKD.


Author(s):  
Afzal Misrani ◽  
Sidra Tabassum ◽  
Li Yang

Mitochondria play a pivotal role in bioenergetics and respiratory functions, which are essential for the numerous biochemical processes underpinning cell viability. Mitochondrial morphology changes rapidly in response to external insults and changes in metabolic status via fission and fusion processes (so-called mitochondrial dynamics) that maintain mitochondrial quality and homeostasis. Damaged mitochondria are removed by a process known as mitophagy, which involves their degradation by a specific autophagosomal pathway. Over the last few years, remarkable efforts have been made to investigate the impact on the pathogenesis of Alzheimer’s disease (AD) of various forms of mitochondrial dysfunction, such as excessive reactive oxygen species (ROS) production, mitochondrial Ca2+ dyshomeostasis, loss of ATP, and defects in mitochondrial dynamics and transport, and mitophagy. Recent research suggests that restoration of mitochondrial function by physical exercise, an antioxidant diet, or therapeutic approaches can delay the onset and slow the progression of AD. In this review, we focus on recent progress that highlights the crucial role of alterations in mitochondrial function and oxidative stress in the pathogenesis of AD, emphasizing a framework of existing and potential therapeutic approaches.


2020 ◽  
Vol 15 (7) ◽  
pp. 926-936 ◽  
Author(s):  
Jorge L. Gamboa ◽  
Baback Roshanravan ◽  
Theodore Towse ◽  
Chad A. Keller ◽  
Aaron M. Falck ◽  
...  

Background and objectivesPatients with CKD suffer from frailty and sarcopenia, which is associated with higher morbidity and mortality. Skeletal muscle mitochondria are important for physical function and could be a target to prevent frailty and sarcopenia. In this study, we tested the hypothesis that mitochondrial dysfunction is associated with the severity of CKD. We also evaluated the interaction between mitochondrial function and coexisting comorbidities, such as impaired physical performance, intermuscular adipose tissue infiltration, inflammation, and oxidative stress.Design, setting, participants, & measurements Sixty-three participants were studied, including controls (n=21), patients with CKD not on maintenance hemodialysis (CKD 3–5; n=20), and patients on maintenance hemodialysis (n=22). We evaluated in vivo knee extensors mitochondrial function using 31P magnetic resonance spectroscopy to obtain the phosphocreatine recovery time constant, a measure of mitochondrial function. We measured physical performance using the 6-minute walk test, intermuscular adipose tissue infiltration with magnetic resonance imaging, and markers of inflammation and oxidative stress in plasma. In skeletal muscle biopsies from a select number of patients on maintenance hemodialysis, we also measured markers of mitochondrial dynamics (fusion and fission).ResultsWe found a prolonged phosphocreatine recovery constant in patients on maintenance hemodialysis (53.3 [43.4–70.1] seconds, median [interquartile range]) and patients with CKD not on maintenance hemodialysis (41.5 [35.4–49.1] seconds) compared with controls (38.9 [32.5–46.0] seconds; P=0.001 among groups). Mitochondrial dysfunction was associated with poor physical performance (r=0.62; P=0.001), greater intermuscular adipose tissue (r=0.44; P=0.001), and increased markers of inflammation and oxidative stress (r=0.60; P=0.001). We found mitochondrial fragmentation and increased content of dynamin-related protein 1, a marker of mitochondrial fission, in skeletal muscles from patients on maintenance hemodialysis (0.86 [0.48–1.35] arbitrary units (A.U.), median [interquartile range]) compared with controls (0.60 [0.24–0.75] A.U.).ConclusionsMitochondrial dysfunction is due to multifactorial etiologies and presents prior to the initiation of maintenance hemodialysis, including in patients with CKD stages 3–5.


2019 ◽  
Vol 97 (4) ◽  
pp. 397-405 ◽  
Author(s):  
Bing Liu ◽  
Jiangbo Jin ◽  
Ziyu Zhang ◽  
Li Zuo ◽  
Meixiu Jiang ◽  
...  

Shikonin, a naphthoquinone derivative isolated from the root of Lithospermum erythrorhizon, exhibits broad-spectrum antitumor activity via different molecular mechanisms. In this study, we investigated the effect of shikonin on mitochondrial dysfunction in hepatocellular carcinoma (HCC). Our results showed that shikonin inhibited the proliferation, migration, and invasiveness of HCCLM3 cells, and promoted cell apoptosis in a dose-dependent manner. More importantly, shikonin affected mitochondrial function by disrupting mitochondrial membrane potential and oxidative stress (OS) status. Furthermore, shikonin decreased the oxygen consumption rate of HCCLM3 cells, as well as the levels of ATP and metabolites involved in the tricarboxylic acid cycle (TCA cycle). We also investigated the molecular mechanisms underlying the regulation of mitochondrial function by shikonin as an inhibitor of PKM2. Shikonin decreased the expression of PKM2 in the mitochondria and affected other metabolic pathways (AMPK and PGC1α pathways), which aggravated the oxidative stress and nutrient deficiency. Our results indicate a novel role of shikonin in triggering mitochondria dysfunction via the PKM2–AMPK–PGC1α signaling pathway and provide a promising therapeutic approach for the treatment of HCC.


2008 ◽  
Vol 93 (10) ◽  
pp. 3885-3892 ◽  
Author(s):  
Charlotte Brøns ◽  
Christine B. Jensen ◽  
Heidi Storgaard ◽  
Amra Alibegovic ◽  
Stine Jacobsen ◽  
...  

Objective: Low birth weight (LBW) is an independent risk factor of insulin resistance and type 2 diabetes. Recent studies suggest that mitochondrial dysfunction and impaired expression of genes involved in oxidative phosphorylation (OXPHOS) may play a key role in the pathogenesis of insulin resistance in aging and type 2 diabetes. The aim of this study was to determine whether LBW in humans is associated with mitochondrial dysfunction in skeletal muscle. Methods: Mitochondrial capacity for ATP synthesis was assessed by 31phosphorus magnetic resonance spectroscopy in forearm and leg muscles in 20 young, lean men with LBW and 26 matched controls. On a separate day, a hyperinsulinemic euglycemic clamp with excision of muscle biopsies and dual-energy x-ray absorptiometry scanning was performed. Muscle gene expression of selected OXPHOS genes was determined by quantitative real-time PCR. Results: The LBW subjects displayed a variety of metabolic and prediabetic abnormalities, including elevated fasting blood glucose and plasma insulin levels, reduced insulin-stimulated glycolytic flux, and hepatic insulin resistance. Nevertheless, in vivo mitochondrial function was normal in LBW subjects, as was the expression of OXPHOS genes. Conclusions: These data support and expand previous findings of abnormal glucose metabolism in young men with LBW. In addition, we found that the young, healthy men with LBW exhibited hepatic insulin resistance. However, the study does not support the hypothesis that muscle mitochondrial dysfunction per se is the underlying key metabolic defect that explains or precedes whole body insulin resistance in LBW subjects at risk for developing type 2 diabetes.


2012 ◽  
Vol 302 (1) ◽  
pp. E43-E51 ◽  
Author(s):  
Charlotte Brøns ◽  
Stine Jacobsen ◽  
Natalie Hiscock ◽  
Andrew White ◽  
Emma Nilsson ◽  
...  

Low birth weight (LBW) is associated with an increased risk of insulin resistance and downregulation of oxidative phosphorylation (OXPHOS) genes when exposed to a metabolic challenge of high-fat overfeeding (HFO). To elaborate further on the differential effects of HFO in LBW subjects, we measured in vivo mitochondrial function, insulin secretion, hepatic glucose production, and plasma levels of key regulatory hormones before and after 5 days of HFO in 20 young LBW and 26 normal-birth-weight (NBW) men. The LBW subjects developed peripheral insulin resistance after HFO due to impaired endogenous glucose storage (9.42 ± 4.19 vs. 5.91 ± 4.42 mg·kg FFM−1·min−1, P = 0.01). Resting muscle phosphorcreatine and total ATP in muscle increased significantly after HFO in LBW subjects only, whereas additional measurements of mitochondrial function remained unaffected. Despite similar plasma FFA levels, LBW subjects displayed increased fat oxidation during insulin infusion compared with normal-birth-weight (NBW) subjects after HFO (0.37 ± 0.35 vs. 0.17 ± 0.33 mg·kg FFM−1·min−1, P = 0.02). In contrast to NBW subjects, the plasma leptin levels of LBW subjects did not increase, and the plasma gastric inhibitory polypeptide (GIP) as well as pancreatic polypeptide (PP) levels increased less in LBW compared with NBW subjects during HFO. In conclusion, HFO unmasks dissociation between insulin resistance and mitochondrial dysfunction in LBW subjects, suggesting that insulin resistance may be a cause, rather than an effect, of impaired muscle OXPHOS gene expression and mitochondrial dysfunction. Reduced increments in response to HFO of fasting plasma leptin, PP, and GIP levels may contribute to insulin resistance, lower satiety, and impaired insulin secretion in LBW subjects.


Sign in / Sign up

Export Citation Format

Share Document