scholarly journals Exposure to low-dose ambient fine particulate matter PM2.5 and Alzheimer’s disease, non-Alzheimer’s dementia, and Parkinson’s disease in North Carolina

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0253253
Author(s):  
Sung Han Rhew ◽  
Julia Kravchenko ◽  
H. Kim Lyerly

Alzheimer’s disease (AD), non-AD dementia, and Parkinson’s disease (PD) are increasingly common in older adults, yet all risk factors for their onset are not fully understood. Consequently, environmental exposures, including air pollution, have been hypothesized to contribute to the etiology of neurodegeneration. Because persistently elevated rates of AD mortality in the southern Piedmont area of North Carolina (NC) have been documented, we studied mortality and hospital admissions for AD, non-AD dementia, and PD in residential populations aged 65+ with long-term exposures to elevated levels of ambient air particulate matter 2.5 (PM2.5) exceeding the World Health Organization (WHO) air quality standards (≥10μg/m3). Health data were obtained from the State Center for Health Statistics and the Healthcare Cost and Utilization Project. PM2.5 levels were obtained from the MODIS/MISR and SeaWiFS datafiles. Residents in the Study group of elevated air particulate matter (87 zip codes with PM2.5≥10μg/m3) were compared to the residents in the Control group with low levels of air particulate matter (81 zip codes with PM2.5≤7.61μg/m3), and were found to have higher age-adjusted rates of mortality and hospital admissions for AD, non-AD dementia, and PD, including a most pronounced increase in AD mortality (323/100,000 vs. 257/100,000, respectively). After adjustment for multiple co-factors, the risk of death (odds ratio, or OR) from AD in the Study group (OR = 1.35, 95%CI[1.24–1.48]) was significantly higher than ORs of non-AD dementia or PD (OR = 0.97, 95%CI[0.90–1.04] and OR = 1.13, 95%CI[0.92–1.31]). The OR of hospital admissions was significantly increased only for AD as a primary case of hospitalization (OR = 1.54, 95%CI[1.31–1.82]). Conclusion: NC residents aged 65+ with long-term exposures to ambient PM2.5 levels exceeding the WHO standard had significantly increased risks of death and hospital admissions for AD. The effects for non-AD dementia and PD were less pronounced.

2020 ◽  
Vol 18 (10) ◽  
pp. 758-768 ◽  
Author(s):  
Khadga Raj ◽  
Pooja Chawla ◽  
Shamsher Singh

: Tramadol is a synthetic analog of codeine used to treat pain of moderate to severe intensity and is reported to have neurotoxic potential. At therapeutic dose, tramadol does not cause major side effects in comparison to other opioid analgesics, and is useful for the management of neurological problems like anxiety and depression. Long term utilization of tramadol is associated with various neurological disorders like seizures, serotonin syndrome, Alzheimer’s disease and Parkinson’s disease. Tramadol produces seizures through inhibition of nitric oxide, serotonin reuptake and inhibitory effects on GABA receptors. Extensive tramadol intake alters redox balance through elevating lipid peroxidation and free radical leading to neurotoxicity and produces neurobehavioral deficits. During Alzheimer’s disease progression, low level of intracellular signalling molecules like cGMP, cAMP, PKC and PKA affect both learning and memory. Pharmacologically tramadol produces actions similar to Selective Serotonin Reuptake Inhibitors (SSRIs), increasing the concentration of serotonin, which causes serotonin syndrome. In addition, tramadol also inhibits GABAA receptors in the CNS has been evidenced to interfere with dopamine synthesis and release, responsible for motor symptoms. The reduced level of dopamine may produce bradykinesia and tremors which are chief motor abnormalities in Parkinson’s Disease (PD).


Author(s):  
Chau-Ren Jung ◽  
Yu-Ting Lin ◽  
Bing-Fang Hwang

Several studies with animal research associate air pollution in Alzheimer’s disease (AD) neuropathology, but the actual impact of air pollution on the risk of AD is unknown. Here, this study investigates the association between long-term exposure to ozone (O3) and particulate matter (PM) with an aerodynamic diameter equal to or less than 2.5 μm (PM2.5), and newly diagnosed AD in Taiwan. We conducted a cohort study of 95,690 individuals’ age ≥ 65 during 2001–2010. We obtained PM10 and O3 data from Taiwan Environmental Protection Agency during 2000–2010. Since PM2.5 data is only accessible entirely after 2006, we used the mean ratio between PM2.5 and PM10 during 2006–2010 (0.57) to estimate the PM2.5 concentrations from 2000 to 2005. A Cox proportional hazards model was used to evaluate the associations between O3 and PM2.5 at baseline and changes of O3 and PM2.5 during the follow-up period and AD. The adjusted HR for AD was weakly associated with a raised concentration in O3 at baseline per increase of 9.63 ppb (adjusted HR 1.06, 95% confidence interval (CI) 1.00–1.12). Further, we estimated a 211% risk of increase of AD per increase of 10.91 ppb in O3 over the follow-up period (95% CI 2.92–3.33). We found a 138% risk of increase of AD per increase of 4.34 μg/m3 in PM2.5 over the follow-up period (95% CI 2.21–2.56). These findings suggest long-term exposure to O3 and PM2.5 above the current US EPA standards are associated with increased the risk of AD.


2021 ◽  
Vol 79 (4) ◽  
pp. 1761-1773
Author(s):  
Rachel M. Shaffer ◽  
Ge Li ◽  
Sara D. Adar ◽  
C. Dirk Keene ◽  
Caitlin S. Latimer ◽  
...  

Background: Evidence links fine particulate matter (PM2.5) to Alzheimer’s disease (AD), but no community-based prospective cohort studies in older adults have evaluated the association between long-term exposure to PM2.5 and markers of AD neuropathology at autopsy. Objective: Using a well-established autopsy cohort and new spatiotemporal predictions of air pollution, we evaluated associations of 10-year PM2.5 exposure prior to death with Braak stage, Consortium to Establish a Registry for AD (CERAD) score, and combined AD neuropathologic change (ABC score). Methods: We used autopsy specimens (N = 832) from the Adult Changes in Thought (ACT) study, with enrollment ongoing since 1994. We assigned long-term exposure at residential address based on two-week average concentrations from a newly developed spatiotemporal model. To account for potential selection bias, we conducted inverse probability weighting. Adjusting for covariates with tiered models, we performed ordinal regression for Braak and CERAD and logistic regression for dichotomized ABC score. Results: 10-year average (SD) PM2.5 from death across the autopsy cohort was 8.2 (1.9) μg/m3. Average age (SD) at death was 89 (7) years. Each 1μg/m3 increase in 10-year average PM2.5 prior to death was associated with a suggestive increase in the odds of worse neuropathology as indicated by CERAD score (OR: 1.35 (0.90, 1.90)) but a suggestive decreased odds of neuropathology as defined by the ABC score (OR: 0.79 (0.49, 1.19)). There was no association with Braak stage (OR: 0.99 (0.64, 1.47)). Conclusion: We report inconclusive associations between PM2.5 and AD neuropathology at autopsy among a cohort where 94% of individuals experienced 10-year exposures below the current EPA standard. Prior studies of AD risk factors and AD neuropathology are similarly inconclusive, suggesting alternative mechanistic pathways for disease or residual confounding.


Particuology ◽  
2021 ◽  
Author(s):  
Mehdi Fazlzadeh ◽  
Roohollah Rostami ◽  
Fatemeh Yusefian ◽  
Masud Yunesian ◽  
Hosna Janjani

2017 ◽  
Vol 14 (4) ◽  
pp. 441-452 ◽  
Author(s):  
Sofia Wenzler ◽  
Christian Knochel ◽  
Ceylan Balaban ◽  
Dominik Kraft ◽  
Juliane Kopf ◽  
...  

Depression is a common neuropsychiatric manifestation among Alzheimer’s disease (AD) patients. It may compromise everyday activities and lead to a faster cognitive decline as well as worse quality of life. The identification of promising biomarkers may therefore help to timely initiate and improve the treatment of preclinical and clinical states of AD, and to improve the long-term functional outcome. In this narrative review, we report studies that investigated biomarkers for AD-related depression. Genetic findings state AD-related depression as a rather complex, multifactorial trait with relevant environmental and inherited contributors. However, one specific set of genes, the brain derived neurotrophic factor (BDNF), specifically the Val66Met polymorphism, may play a crucial role in AD-related depression. Regarding neuroimaging markers, the most promising findings reveal structural impairments in the cortico-subcortical networks that are related to affect regulation and reward / aversion control. Functional imaging studies reveal abnormalities in predominantly frontal and temporal regions. Furthermore, CSF based biomarkers are seen as potentially promising for the diagnostic process showing abnormalities in metabolic pathways that contribute to AD-related depression. However, there is a need for standardization of methodological issues and for replication of current evidence with larger cohorts and prospective studies.


2019 ◽  
Vol 18 (1) ◽  
pp. 3-10 ◽  
Author(s):  
Chul Ju Hwang ◽  
Dong-Young Choi ◽  
Mi Hee Park ◽  
Jin Tae Hong

Alzheimer’s disease is the most common form of dementia. It is characterized by betaamyloid peptide fibrils which are extracellular deposition of a specific protein, accompanied by extensive neuroinflammation. Various studies show the presence of a number of inflammation markers in the AD brain: elevated inflammatory cytokines and chemokines, and an accumulation of activated microglia in the damaged regions. NF-κB is a family of redox sensitive transcriptional factors, and it is known that NF-κB has binding sites in the promoter region of the genes involved in amyloidogenesis and inflammation. Long-term use of non-steroidal anti-inflammatory drugs prevents progression of AD and delays its onset, suggesting that there is a close correlation between NF-κB and AD pathogenesis. This study aims to (1) assess the association between NF-κB activity and AD through discussion of a variety of experimental and clinical studies on AD and (2) review treatment strategies designed to treat or prevent AD with NF-κB inhibitors.


Sign in / Sign up

Export Citation Format

Share Document