Ozone, Particulate Matter, and Newly Diagnosed Alzheimer’s Disease: A Population-Based Cohort Study in Taiwan

Author(s):  
Chau-Ren Jung ◽  
Yu-Ting Lin ◽  
Bing-Fang Hwang

Several studies with animal research associate air pollution in Alzheimer’s disease (AD) neuropathology, but the actual impact of air pollution on the risk of AD is unknown. Here, this study investigates the association between long-term exposure to ozone (O3) and particulate matter (PM) with an aerodynamic diameter equal to or less than 2.5 μm (PM2.5), and newly diagnosed AD in Taiwan. We conducted a cohort study of 95,690 individuals’ age ≥ 65 during 2001–2010. We obtained PM10 and O3 data from Taiwan Environmental Protection Agency during 2000–2010. Since PM2.5 data is only accessible entirely after 2006, we used the mean ratio between PM2.5 and PM10 during 2006–2010 (0.57) to estimate the PM2.5 concentrations from 2000 to 2005. A Cox proportional hazards model was used to evaluate the associations between O3 and PM2.5 at baseline and changes of O3 and PM2.5 during the follow-up period and AD. The adjusted HR for AD was weakly associated with a raised concentration in O3 at baseline per increase of 9.63 ppb (adjusted HR 1.06, 95% confidence interval (CI) 1.00–1.12). Further, we estimated a 211% risk of increase of AD per increase of 10.91 ppb in O3 over the follow-up period (95% CI 2.92–3.33). We found a 138% risk of increase of AD per increase of 4.34 μg/m3 in PM2.5 over the follow-up period (95% CI 2.21–2.56). These findings suggest long-term exposure to O3 and PM2.5 above the current US EPA standards are associated with increased the risk of AD.

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0253253
Author(s):  
Sung Han Rhew ◽  
Julia Kravchenko ◽  
H. Kim Lyerly

Alzheimer’s disease (AD), non-AD dementia, and Parkinson’s disease (PD) are increasingly common in older adults, yet all risk factors for their onset are not fully understood. Consequently, environmental exposures, including air pollution, have been hypothesized to contribute to the etiology of neurodegeneration. Because persistently elevated rates of AD mortality in the southern Piedmont area of North Carolina (NC) have been documented, we studied mortality and hospital admissions for AD, non-AD dementia, and PD in residential populations aged 65+ with long-term exposures to elevated levels of ambient air particulate matter 2.5 (PM2.5) exceeding the World Health Organization (WHO) air quality standards (≥10μg/m3). Health data were obtained from the State Center for Health Statistics and the Healthcare Cost and Utilization Project. PM2.5 levels were obtained from the MODIS/MISR and SeaWiFS datafiles. Residents in the Study group of elevated air particulate matter (87 zip codes with PM2.5≥10μg/m3) were compared to the residents in the Control group with low levels of air particulate matter (81 zip codes with PM2.5≤7.61μg/m3), and were found to have higher age-adjusted rates of mortality and hospital admissions for AD, non-AD dementia, and PD, including a most pronounced increase in AD mortality (323/100,000 vs. 257/100,000, respectively). After adjustment for multiple co-factors, the risk of death (odds ratio, or OR) from AD in the Study group (OR = 1.35, 95%CI[1.24–1.48]) was significantly higher than ORs of non-AD dementia or PD (OR = 0.97, 95%CI[0.90–1.04] and OR = 1.13, 95%CI[0.92–1.31]). The OR of hospital admissions was significantly increased only for AD as a primary case of hospitalization (OR = 1.54, 95%CI[1.31–1.82]). Conclusion: NC residents aged 65+ with long-term exposures to ambient PM2.5 levels exceeding the WHO standard had significantly increased risks of death and hospital admissions for AD. The effects for non-AD dementia and PD were less pronounced.


BMJ Open ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. e022404 ◽  
Author(s):  
Iain M Carey ◽  
H Ross Anderson ◽  
Richard W Atkinson ◽  
Sean D Beevers ◽  
Derek G Cook ◽  
...  

ObjectiveTo investigate whether the incidence of dementia is related to residential levels of air and noise pollution in London.DesignRetrospective cohort study using primary care data.Setting75 Greater London practices.Participants130 978 adults aged 50–79 years registered with their general practices on 1 January 2005, with no recorded history of dementia or care home residence.Primary and secondary outcome measuresA first recorded diagnosis of dementia and, where specified, subgroups of Alzheimer’s disease and vascular dementia during 2005–2013. The average annual concentrations during 2004 of nitrogen dioxide (NO2), particulate matter with a median aerodynamic diameter ≤2.5 µm (PM2.5) and ozone (O3) were estimated at 20×20 m resolution from dispersion models. Traffic intensity, distance from major road and night-time noise levels (Lnight) were estimated at the postcode level. All exposure measures were linked anonymously to clinical data via residential postcode. HRs from Cox models were adjusted for age, sex, ethnicity, smoking and body mass index, with further adjustments explored for area deprivation and comorbidity.Results2181 subjects (1.7%) received an incident diagnosis of dementia (39% mentioning Alzheimer’s disease, 29% vascular dementia). There was a positive exposure response relationship between dementia and all measures of air pollution except O3, which was not readily explained by further adjustment. Adults living in areas with the highest fifth of NO2concentration (>41.5 µg/m3) versus the lowest fifth (<31.9 µg/m3) were at a higher risk of dementia (HR=1.40, 95% CI 1.12 to 1.74). Increases in dementia risk were also observed with PM2.5, PM2.5specifically from primary traffic sources only and Lnight, but only NO2and PM2.5remained statistically significant in multipollutant models. Associations were more consistent for Alzheimer’s disease than vascular dementia.ConclusionsWe have found evidence of a positive association between residential levels of air pollution across London and being diagnosed with dementia, which is unexplained by known confounding factors.


Author(s):  
Luigi Attademo ◽  
Francesco Bernardini

As a global problem that has increasingly been causing worldwide concern, air pollution poses a significant and serious environmental risk to health. Risks of cardiovascular and respiratory diseases, as well as various types of cancer, have been consistently associated with the exposure to air pollutants. More recently, various studies have also shown that the central nervous system is also attacked by air pollution. Air pollution appears to be strongly associated with a higher risk of cognitive defects, neurodevelopmental (e.g., schizophrenia) and neurodegenerative (e.g., Alzheimer’s disease) disorders. Subjects with schizophrenia, as well as subjects with Alzheimer’s disease, experience a variety of neuropsychological deficits and cognitive impairments. This determines an adverse effect on social and professional functioning, and it contributes to the long-term disease burden. However, no final conclusions have been drawn on the matter of the direct relationship between schizophrenia and Alzheimer’s disease. In recent years, the topic of urbanicity and mental health has become increasingly important. Urban exposure to environmental toxins and pollution is currently described as a reliable risk factor for schizophrenia and other psychoses, and it has been demonstrated more and more how exposure to air pollutants is associated with increased risk of dementia. Pathways by which air pollution can target and damage the brain, leading to an increased risk for developing schizophrenia and Alzheimer’s disease, are multiple and complex. Results from epidemiological studies suggest potential associations, but are still insufficient to confirm causality. Further studies are needed in order to verify this hypothesis. And if confirmed, the clinical implications could be of substantial relevance for both public and mental health.


Author(s):  
Lilian Calderón-Garcidueñas ◽  
Angélica González-Maciel ◽  
Randy J. Kulesza ◽  
Luis Oscar González-González ◽  
Rafael Reynoso-Robles ◽  
...  

Exposures to fine particulate matter (PM2.5) and ozone (O3)≥US EPA standards are associated with Alzheimer’s disease (AD) risk. The projection of 13.8 million AD cases in the US by the year 2050 obligate us to explore early environmental exposures as contributors to AD risk and pathogenesis. Metropolitan Mexico City children and young adults have lifetime exposures to PM2.5 and O3, and AD starting in the brainstem and olfactory bulb is relentlessly progressing in the first two decades of life. Magnetite combustion and friction-derived nanoparticles reach the brain and are associated with early and progressive damage to the neurovascular unit and to brain cells. In this review: 1) we highlight the interplay environment/genetics in the AD development in young populations; 2) comment upon ApoE ε4 and the rapid progression of neurofibrillary tangle stages and higher suicide risk in youth; and 3) discuss the role of combustion-derived nanoparticles and brain damage. A key aspect of this review is to show the reader that air pollution is complex and that profiles change from city to city with common denominators across countries. We explore and compare particulate matter profiles in Mexico City, Paris, and Santiago in Chile and make the point of why we should invest in decreasing PM2.5 to at least our current US EPA standard. Multidisciplinary intervention strategies are critical for prevention or amelioration of cognitive deficits and AD progression and risk of suicide in young individuals. AD pathology evolving from childhood is threating the wellbeing of future generations.


Drugs & Aging ◽  
2017 ◽  
Vol 34 (4) ◽  
pp. 303-310 ◽  
Author(s):  
Laia Calvó-Perxas ◽  
◽  
Oriol Turró-Garriga ◽  
Joan Vilalta-Franch ◽  
Manuela Lozano-Gallego ◽  
...  

2018 ◽  
Vol 33 (6) ◽  
pp. 385-393 ◽  
Author(s):  
Jakub Kazmierski ◽  
Chaido Messini-Zachou ◽  
Mara Gkioka ◽  
Magda Tsolaki

Cholinesterase inhibitors (ChEIs) are the mainstays of symptomatic treatment of Alzheimer’s disease (AD); however, their efficacy is limited, and their use was associated with deaths in some groups of patients. The aim of the current study was to assess the impact of the long-term use of ChEIs on mortality in patients with AD. This observational, longitudinal study included 1171 adult patients with a diagnosis of AD treated with donepezil or rivastigmine. Each patient was observed for 24 months or until death. The cognitive and functional assessments, the use of ChEIs, memantine, antipsychotics, antidepressants, and anxiolytics were recorded. The total number of deaths at the end of the observational period was 99 (8.45%). The patients who had received rivastigmine treatment were at an increased risk of death in the follow-up period. The higher risk of death in the rivastigmine group remained significant in multivariate Cox regression models.


2020 ◽  
Vol 9 (22) ◽  
Author(s):  
Zhenyu Zhang ◽  
Jeonggyu Kang ◽  
Yun Soo Hong ◽  
Yoosoo Chang ◽  
Seungho Ryu ◽  
...  

Background Studies have shown that short‐term exposure to air pollution is associated with cardiac arrhythmia hospitalization and mortality. However, the relationship between long‐term particulate matter air pollution and arrhythmias is still unclear. We evaluate the prospective association between particulate matter (PM) air pollution and the risk of incident arrhythmia and its subtypes. Methods and Results Participants were drawn from a prospective cohort study of 178 780 men and women who attended regular health screening exams in Seoul and Suwon, South Korea, from 2002 to 2016. Exposure to PM with an aerodynamic diameter of ≤10 and ≤2.5 μm (PM 10 and PM 2.5 , respectively) was estimated using a land‐use regression model. The associations between long‐term PM air pollution and arrhythmia were examined using pooled logistic regression models with time‐varying exposure and covariables. In the fully adjusted model, the odds ratios (ORs) for any arrhythmia associated with a 10 μg/m 3 increase in 12‐, 36‐, and 60‐month PM 10 exposure were 1.15 (1.09, 1.21), 1.12 (1.06, 1.18), and 1.14 (1.08, 1.20), respectively. The ORs with a 10 μg/m 3 increase in 12‐ and 36‐month PM 2.5 exposure were 1.27 (1.15, 1.40) and 1.10 (0.99, 1.23). PM 10 was associated with increased risk of incident bradycardia and premature atrial contraction. PM 2.5 was associated with increased risk of incident bradycardia and right bundle‐branch block. Conclusions In this large cohort study, long‐term exposure to outdoor PM air pollution was associated with increased risk of arrhythmia. Our findings indicate that PM air pollution may be a contributor to cardiac arrhythmia in the general population.


2015 ◽  
Vol 25 (3) ◽  
pp. 687-697 ◽  
Author(s):  
Tarja H. Välimäki ◽  
Janne A. Martikainen ◽  
Kristiina Hongisto ◽  
Saku Väätäinen ◽  
Harri Sintonen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document