scholarly journals Reduction of knee joint load suppresses cartilage degeneration, osteophyte formation, and synovitis in early-stage osteoarthritis using a post-traumatic rat model

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254383
Author(s):  
Ikufumi Takahashi ◽  
Keisuke Takeda ◽  
Taro Matsuzaki ◽  
Hiroshi Kuroki ◽  
Masahiro Hoso

The purpose of this study was to clarify the histological effect of reducing the loading to knee on cartilage degeneration, osteophyte formation, and synovitis in early-stage osteoarthritis (OA) using a post-traumatic rat model. Ten male rats were randomly allocated into two experimental groups: OA induction by surgical destabilization of medial meniscus (DMM, OA group) and hindlimb suspension after OA induction by DMM (OAHS group). The articular cartilage, osteophyte formation, and synovial membrane in the medial tibiofemoral joint were analyzed histologically and histomorphometrically at 2 and 4 weeks after surgery. The histological scores and changes in articular cartilage and osteophyte formation were significantly milder and slower in the OAHS group than in the OA group. At 2 and 4 weeks, there were no significant differences in cartilage thickness and matrix staining intensity between both the groups, but chondrocytes density was significantly lower in the OA group. Synovitis was milder in OAHS group than in OA group at 2 weeks. Reducing knee joint loading inhibited histological OA changes in articular cartilage, osteophyte formation, and synovial inflammation. This result supports the latest clinical guidelines for OA treatment. Further studies using biochemical and mechanical analyses are necessary to elucidate the mechanism underlying delayed OA progression caused by joint-load reduction.

Cartilage ◽  
2020 ◽  
pp. 194760352098235
Author(s):  
Ikufumi Takahashi ◽  
Taro Matsuzaki ◽  
Hiroshi Kuroki ◽  
Masahiro Hoso

Objective The study aim was to evaluate the histological relationship between osteoarthritis (OA) and articular cartilage in disuse atrophy induced by hindlimb unloading in a post-traumatic OA rat model. Design Forty male rats were divided into the 4 following experimental groups: control, hindlimb suspension (HS), OA induced by destabilization of the medial meniscus (OA), and OA induction after hindlimb suspension (HS-OA). Histological changes in the articular cartilage of the tibia were evaluated by the Osteoarthritis Research Society International (OARSI) scores and histomorphometrical analyses at 2, 4, and 8 weeks after OA induction. Results We confirmed that disuse atrophy of the articular cartilage was caused by thinning of the articular cartilage and the decrease in matrix staining for the nonloading period of 4 weeks. The OARSI scores and histomorphological analyses revealed that OA progressed significantly wider and deeper in the HS-OA group than in the OA group over time. In the sham group, disuse atrophy of the articular cartilage recovered at 2 weeks after reloading. Conclusions This study revealed that OA progressed faster in cartilage atrophy than in normal articular cartilage. Further studies are required for investigating the mechanisms of disuse atrophy of cartilage and its association with OA using the biochemical and immunohistochemical analysis.


Cartilage ◽  
2021 ◽  
pp. 194760352110638
Author(s):  
Ikufumi Takahashi ◽  
Taro Matsuzaki ◽  
Hiroshi Kuroki ◽  
Masahiro Hoso

Objective This study aimed to clarify physiological reloading on disuse atrophy of the articular cartilage and bone in the rat knee using the hindlimb suspension model. Design Thirty male rats were divided into 3 experimental groups: control group, hindlimb suspension group, and reloading after hindlimb suspension group. Histological changes in the articular cartilage and bone of the tibia were evaluated by histomorphometrical and immunohistochemical analyses at 2 and 4 weeks after reloading. Results The thinning and loss of matrix staining in the articular cartilage and the decrease in bone volume induced by hindlimb suspension recovered to the same level as the control group after 2 weeks of reloading. The proportion of the noncalcified and calcified layers of the articular cartilage and the thinning of subchondral bone recovered to the same level as the control group after 4 weeks of reloading. Conclusions Disuse atrophy of the articular cartilage and bone induced by hindlimb suspension in the tibia of rats was improved by physiological reloading.


Cartilage ◽  
2018 ◽  
Vol 10 (2) ◽  
pp. 238-244 ◽  
Author(s):  
Jessica Immonen ◽  
Chris Siefring

Objective Osteoarthritis (OA) literature makes minimal suggestion regarding age of disease onset or preventative strategies to reduce risk for onset in various populations. In 2005, the Centers for Disease Control and Prevention estimated that 33.6% of Americans 65+ years old were affected by OA; this cadaveric analysis suggests this is largely underestimated. The objective of this assessment is to identify at-risk populations for OA in the knee joint and make recommendations to prevent or delay disease onset. Design Morphometric analyses of the articular cartilage of the tibial plateau were performed on cadaver specimens using Image Pro software on 3 age populations and surface area measurements for articular cartilage degradation were compared with donors’ reported ages, clinical histories, and occupations. Results Data showed that by the seventh decade of life, when patients are in their 60s, articular cartilage degeneration on the tibial plateau had commenced in 100% of specimen. All “homemakers” displayed above-average medial tibial plateau degeneration (32.33% ± 24.85%) for their age group while simultaneously reporting pathologies in their clinical history that encourage a sedentary lifestyle. Conclusions This assessment identifies an occupational class with a propensity to develop disease and also identifies a more realistic time frame than previous advisory committees have produced regarding age of disease onset and initiation of preventative measures. It is recommended that strengthening of the hip abductors and the musculature supporting the knee commence early in adult life to avoid valgus collapse and shearing at the knee joint.


Nutrients ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1260 ◽  
Author(s):  
Marta Anna Szychlinska ◽  
Rosa Imbesi ◽  
Paola Castrogiovanni ◽  
Claudia Guglielmino ◽  
Silvia Ravalli ◽  
...  

Deficiency in vitamin D (Vit D) has been widely associated with several musculoskeletal diseases. However, the effects of the exogenous Vit D supplementation are still unclear in the prevention of the latter, especially in the cartilage developmental period. The aim of this study was to compare the effects of Vit D supplementation and restriction on the articular cartilage development in healthy young sedentary rats. To this aim, twelve nine-week-old healthy Sprague–Dawley male rats were subjected to Vit D-based experimental diets: R, with a content in Vit D of 1400 IU/kg; R-DS, with a Vit D supplementation (4000 IU/kg); R-DR, with a Vit D restriction (0 IU/kg) for 10 weeks. The morphology, thickness and expression of cartilage-associated molecules such as collagen type II/X, lubricin and Vit D receptor (VDR), were assessed. Histological, histomorphometric and immunohistochemical evaluations were made on rat tibial cartilage samples. In the present experimental model, restriction of Vit D intake induced: The lower thickness of cartilage compared both to R (p = < 0.0001) and R-DS (p = < 0.0001); reduction of proteoglycans in the extracellular matrix (ECM) compared both to R (p = 0.0359) and R-DS (p = < 0.0001); decreased collagen II (Col II) with respect both to R (p = 0.0076) and R-DS (p = 0.0016); increased collagen X (Col X) immunoexpression when compared both to R (p = < 0.0001) and R-DS (p = < 0.0001), confirming data from the literature. Instead, supplementation of Vit D intake induced: Higher cartilage thickness with respect both to R (p = 0.0071) and R-DR (p = < 0.0001); increase of ECM proteoglycan deposition compared both to R (p = 0.0175) and R-DR (p = < 0.0001); higher immunoexpression of lubricin with respect both to R (p = 0.001) and R-DR (p = 0.0008). These results suggest that Vit D supplementation with diet, already after 10 weeks, has a favorable impact on the articular cartilage thickness development, joint lubrication and ECM fibers deposition in a young healthy rat model.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Yasuhito Sogi ◽  
Yutaka Yabe ◽  
Yoshihiro Hagiwara ◽  
Masahiro Tsuchiya ◽  
Yoshito Onoda ◽  
...  

Abstract Background Joint hemorrhage is caused by trauma, ligament reconstruction surgery, and bleeding disorders such as hemophilia. Recurrence of hemorrhage in the joint space induces hemosiderotic synovitis and oxidative stress, resulting in both articular cartilage degeneration and arthropathy. Joint immobilization is a common treatment option for articular fractures accompanied by joint hemorrhage. Although joint hemorrhage has negative effects on the articular cartilage, there is no consensus on whether a reduction in joint hemorrhage would effectively prevent articular cartilage degeneration. The purpose of this study was to investigate the effect of joint hemorrhage combined with joint immobilization on articular cartilage degeneration in a rat immobilized knee model. Methods The knee joints of adult male rats were immobilized at the flexion using an internal fixator from 3 days to 8 weeks. The rats were randomly divided into the following groups: immobilized blood injection (Im-B) and immobilized-normal saline injection (Im-NS) groups. The cartilage was evaluated in two areas (contact and non-contact areas). The cartilage was used to assess chondrocyte count, Modified Mankin score, and cartilage thickness. The total RNA was extracted from the cartilage in both areas, and the expression of metalloproteinase (MMP)-8, MMP-13, interleukin (IL)-1β, and tumor necrosis factor (TNF)-α was measured by quantitative real-time polymerase chain reaction. Results The number of chondrocytes in the Im-B group significantly decreased in both areas, compared with that in the Im-NS group. Modified Mankin score from 4 to 8 weeks of the Im-B group was significantly higher than that of the Im-NS group only in the contact area. The expression of MMP-8 and MMP-13 from 2 to 4 weeks and TNF-α from 2 to 8 weeks significantly increased in the Im-B group compared with those in the Im-NS group, but there was no significant difference in IL-1β expression. Conclusions The results showed that joint hemorrhage exacerbated immobilization-induced articular cartilage degeneration. Drainage of a joint hemorrhage or avoidance of loading may help prevent cartilage degeneration during joint immobilization with a hemorrhage.


Author(s):  
Patchava Apparao ◽  
Sudhakar S ◽  
Ganapathi Swamy Ch ◽  
Ravi Shankar Reddy

Objectives: To determine the effectiveness of knee joint stabilization exercises in minimizing articular cartilage degeneration and to examine theeffectiveness of knee joint stabilization exercises on decreasing pain, improving range of motion (ROM) and muscle strength.Methods: About 20 volunteer subjects (age 35-65 years) with primary osteoarthritis fulfilled the inclusion criteria given the knee stabilizationexercises for 8 weeks. Pain, muscle strength, functional outcome score, and serum cartilage oligomeric matrix protein (COMP) values were measuredpre- and post-intervention using visual analog scale, dynamometer, and ELISA test. Data were analyzed using a paired t-test with Statistical Packagefor the Social Sciences version 20 to find out the difference between the pre- and post-test.Results: The results of the study have shown that significant difference between pre- and post-test values of pain, ROM, muscle strength and functionaloutcome score with p<0.05, and there is statistical in significance in serum COMP value (p<0.05).Conclusion: Stabilization exercises of knee joint were shown to be beneficial for decreasing pain, improving ROM and muscle strength, and there wasno effect on articular cartilage changes in degenerative tibiofemoral joint disease.Keywords: Serum cartilage oligomeric matrix protein, Knee stabilization exercises, Proprioception exercises, Muscle strength.  


2017 ◽  
Vol 25 ◽  
pp. S330-S331
Author(s):  
J. Morko ◽  
J. Vääräniemi ◽  
J.P. Rissanen ◽  
J.M. Halleen ◽  
Z. Peng

Sign in / Sign up

Export Citation Format

Share Document