scholarly journals Assessment of Vitamin D Supplementation on Articular Cartilage Morphology in a Young Healthy Sedentary Rat Model

Nutrients ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1260 ◽  
Author(s):  
Marta Anna Szychlinska ◽  
Rosa Imbesi ◽  
Paola Castrogiovanni ◽  
Claudia Guglielmino ◽  
Silvia Ravalli ◽  
...  

Deficiency in vitamin D (Vit D) has been widely associated with several musculoskeletal diseases. However, the effects of the exogenous Vit D supplementation are still unclear in the prevention of the latter, especially in the cartilage developmental period. The aim of this study was to compare the effects of Vit D supplementation and restriction on the articular cartilage development in healthy young sedentary rats. To this aim, twelve nine-week-old healthy Sprague–Dawley male rats were subjected to Vit D-based experimental diets: R, with a content in Vit D of 1400 IU/kg; R-DS, with a Vit D supplementation (4000 IU/kg); R-DR, with a Vit D restriction (0 IU/kg) for 10 weeks. The morphology, thickness and expression of cartilage-associated molecules such as collagen type II/X, lubricin and Vit D receptor (VDR), were assessed. Histological, histomorphometric and immunohistochemical evaluations were made on rat tibial cartilage samples. In the present experimental model, restriction of Vit D intake induced: The lower thickness of cartilage compared both to R (p = < 0.0001) and R-DS (p = < 0.0001); reduction of proteoglycans in the extracellular matrix (ECM) compared both to R (p = 0.0359) and R-DS (p = < 0.0001); decreased collagen II (Col II) with respect both to R (p = 0.0076) and R-DS (p = 0.0016); increased collagen X (Col X) immunoexpression when compared both to R (p = < 0.0001) and R-DS (p = < 0.0001), confirming data from the literature. Instead, supplementation of Vit D intake induced: Higher cartilage thickness with respect both to R (p = 0.0071) and R-DR (p = < 0.0001); increase of ECM proteoglycan deposition compared both to R (p = 0.0175) and R-DR (p = < 0.0001); higher immunoexpression of lubricin with respect both to R (p = 0.001) and R-DR (p = 0.0008). These results suggest that Vit D supplementation with diet, already after 10 weeks, has a favorable impact on the articular cartilage thickness development, joint lubrication and ECM fibers deposition in a young healthy rat model.

Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1617 ◽  
Author(s):  
Manuel Sosa Henríquez ◽  
M. Jesús Gómez de Tejada Romero

Vitamin D deficiency is a global health problem due to its high prevalence and its negative consequences on musculoskeletal and extra-skeletal health. In our comparative review of the two exogenous vitamin D supplementation options most used in our care setting, we found that cholecalciferol has more scientific evidence with positive results than calcifediol in musculoskeletal diseases and that it is the form of vitamin D of choice in the most accepted and internationally recognized clinical guidelines on the management of osteoporosis. Cholecalciferol, unlike calcifediol, guarantees an exact dosage in IU (International Units) of vitamin D and has pharmacokinetic properties that allow either daily or even weekly, fortnightly, or monthly administration in its equivalent doses, which can facilitate adherence to treatment. Regardless of the pattern of administration, cholecalciferol may be more likely to achieve serum levels of 25(OH)D (25-hydroxy-vitamin D) of 30–50 ng/mL, an interval considered optimal for maximum benefit at the lowest risk. In summary, the form of vitamin D of choice for exogenous supplementation should be cholecalciferol, with calcifediol reserved for patients with liver failure or severe intestinal malabsorption syndromes.


2017 ◽  
Vol 95 (2) ◽  
pp. 151-156 ◽  
Author(s):  
Ola Ahmed El-Gohary ◽  
Mona Abdel-Azeem Said

There are considerable public concerns about the relationship between mobile phone radiation and human health. The present study assesses the effect of electromagnetic field (EMF) emitted from a mobile phone on the immune system in rats and the possible protective role of vitamin D. Rats were randomly divided into six groups: Group I: control group; Group II: received vitamin D (1000 IU/kg/day) orally; Group III: exposed to EMF 1 h/day; Group IV: exposed to EMF 2 h/day; Group V: exposed to EMF 1 h/day and received vitamin D (1000 IU/kg/day); Group VI: exposed to EMF 2 h/day and received vitamin D (1000 IU/kg/day). After 30 days of exposure time, 1 h/day EMF exposure resulted in significant decrease in immunoglobulin levels (IgA, IgE, IgM, and IgG); total leukocyte, lymphocyte, eosinophil and basophil counts; and a significant increase in neutrophil and monocyte counts. These changes were more increased in the group exposed to 2 h/day EMF. Vitamin D supplementation in EMF-exposed rats reversed these results when compared with EMF-exposed groups. In contrast, 7, 14, and 21 days of EMF exposure produced nonsignificant differences in these parameters among all experimental groups. We concluded that exposure to mobile phone radiation compromises the immune system of rats, and vitamin D appears to have a protective effect.


Author(s):  
Vladimir Vranic ◽  
Milena Potic Floranovic ◽  
Milan Petrovic ◽  
Srdjan Starcevic ◽  
Gordana Supic

Abstract Osteoarthritis is a degenerative, painful and irreversible disease that affects millions of people worldwide. The causes and mechanisms of osteoarthritis have not been fully understood. Vitamin D is an essential factor in bone metabolism. Its actions are mediated by the vitamin D receptor, a transcription factor that controls gene expression, thus maintaining calcium and phosphate homeostasis. Vitamin D has been hypothesized to play essential role in a number of musculoskeletal diseases including osteoarthritis, and its deficiency is prevalent among osteoarthritis patients. A large number of studies have been done regarding the effects of vitamin D in pathogenesis and progression of osteoarthritis, as well as its use a therapeutic agent. Up to date, studies have provided controversial results, and no consensus concerning this matter was achieved. With this review, we aim to explore current data on the possible role of vitamin D and its receptor in pathogenesis of osteoarthritis and assess the efficiency of vitamin D supplementation as a therapeutic strategy.


2021 ◽  
Vol 65 (2) ◽  
pp. 193-200
Author(s):  
Nilay Seyidoğlu ◽  
Eda Köşeli ◽  
Rovshan Gurbanlı ◽  
Cenk Aydın

Abstract Introduction There is a balance between oxidative stress, antioxidant capacity and immune response. Their roles in physiological and behavioural mechanisms are important for the maintenance of the organism’s internal equilibrium. This study aimed to evaluate the antioxidant effects of the exogenous alga Spirulina platensis (Arthrospira platensis) in a stress-induced rat model, and to describe its possible mechanism of action. Material and Methods Thirty-six adult male Sprague Dawley rats were separated into four groups: control (C), stress (S), S. platensis (Sp), and S. platensis + stress (SpS). The rats in groups Sp and SpS were fed with 1,500 mg/kg b.w./day Spirulina platensis for 28 days. All rats were exposed to prolonged light phase conditions (18 h light : 6 h dark) for 14 days. The SpS and S groups were exposed to stress by being kept isolated and in a crowded environment. Blood samples were obtained by puncturing the heart on the 28th day. The effect of stress on serum corticosterone, oxidative stress markers (TOS, TAC, PON1, OSI) and immunological parameters (IL-2, IL-4, IFN-ɣ) were tested. Also, the brain, heart, intestines (duodenum, ileum, and colon), kidney, liver, spleen, and stomach of the rats were weighed. Results Serum corticosterone levels were higher in the S group than in the C group, and significantly lower in the SpS group than in the S group. Mean total antioxidant capacity were lower in the S group than in the C group, and Spirulina reversed this change. Although not significantly different, IL-2 was lower in the S group than in the C group. However, in the SpS group, IL-2 increased due to Spirulina platensis mitigating effects of stress. Conclusion Male rats fed a diet with Spirulina platensis could experience significantly milder physiological changes during stress, although stress patterns may be different. Exogenous antioxidant supplements merit further investigation in animals and humans where the endogenous defence mechanism against stress may not be sufficient.


2018 ◽  
Vol 52 (2) ◽  
pp. 69-75 ◽  
Author(s):  
Titin Andri Wihastuti ◽  
Teuku Heriansyah ◽  
Hanifa Hanifa ◽  
Sri Andarini ◽  
Zuhrotus Sholichah ◽  
...  

AbstractObjective. Increase in the low-density lipoprotein (LDL) level in diabetes mellitus and atherosclerosis is related to lipoprotein associated phospholipase A2 (Lp-PLA2). Lp-PLA2 is an enzyme that produces lysophosphatidylcholine (LysoPC) and oxidized nonesterified fatty acids (oxNEFA). LysoPC regulates inflammation mediators, including intra-cellular adhesion molecule-1 (ICAM-1). Darapladib is known as a Lp-PLA2 specific inhibitor. The aim of this study was to reveal the effect of darapladib on the foam cell number, inducible nitric oxide synthase (iNOS), and ICAM-1 expression in aorta at early stages of the atherosclerosis in type 2 diabetes mellitus Sprague-Dawley rat model.Methods. Thirty Sprague-Dawley male rats were divided into 3 main groups: control, rats with type 2 diabetes mellitus (T2DM), and T2DM rats treated with darapladib (T2DM-DP). Each group was divided into 2 subgroups according the time of treatment: 8-week and 16-week treatment group. Fasting blood glucose, insulin resistance, and lipid profile were measured and analyzed to ensure T2DM model. The foam cells number were detected using hematoxylin-eosin (HE) staining and the expression of iNOS and ICAM-1 was analyzed using double immunofluorescence staining.Results. Induction of T2DM in male Sprague-Dawley rats after high fat diet and streptozotocin injection was confirmed by elevated levels of total cholesterol and LDL and increased fasting glucose and insulin levels compared to controls after both times of treatment. Moreover, T2DM in rats induced a significant increase (p<0.05) in the foam cells number and iNOS and ICAM-1 expression in aorta compared to controls after both treatment times. Darapladib treatment significantly reduced (p<0.05) foam cells number as well as iNOS expression in aorta in rats with T2DM after both treatment times. A significant decrease (p<0.05) in ICAM-1 expression in aorta was observed after darapladib treatment in rats with T2DM only after 8 weeks of treatment.Conclusion. Our data indicate that darapladib can decrease the foam cells number, iNOS, and ICAM-1 expression in aorta at the early stages of atherosclerosis in T2DM rat model.


2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Yinong Wang ◽  
Zhiwei Liu ◽  
Qing Wang ◽  
Qianjin Feng ◽  
Wufan Chen

This study aimed to investigate degradation of the articular cartilage and loss of the cancellous bone in an ovariectomized (OVX) rat model simulating early human menopausal stage. Fourteen health female Sprague-Dawley rats were randomly divided into two groups (n=7 per group): an OVX group that underwent bilateral ovariectomy to create an OVX model with low estrogen levels and a sham group in which only the periovarian fatty tissue was exteriorized. All the animals were sacrificed at 3 weeks after ovariectomy. The left tibiae were harvested. The articular cartilage at medial tibial plateau (MTP) and lateral tibial plateau (LTP) was assessed with quantitative high-frequency ultrasound. The cancellous bone was evaluated with micro-CT. The results indicated that, in comparison with the sham rats, the OVX rats exhibited significant alterations in acoustic parameters of the articular cartilage but insignificant changes in microarchitectural parameters of the cancellous bone in early stage of low estrogen levels. The results of this study suggest that cartilage degradation induced by estrogen reduction was detected earlier with quantitative ultrasound than that of the cancellous bone loss in 3 wk OVX rats.


Cartilage ◽  
2020 ◽  
pp. 194760352098235
Author(s):  
Ikufumi Takahashi ◽  
Taro Matsuzaki ◽  
Hiroshi Kuroki ◽  
Masahiro Hoso

Objective The study aim was to evaluate the histological relationship between osteoarthritis (OA) and articular cartilage in disuse atrophy induced by hindlimb unloading in a post-traumatic OA rat model. Design Forty male rats were divided into the 4 following experimental groups: control, hindlimb suspension (HS), OA induced by destabilization of the medial meniscus (OA), and OA induction after hindlimb suspension (HS-OA). Histological changes in the articular cartilage of the tibia were evaluated by the Osteoarthritis Research Society International (OARSI) scores and histomorphometrical analyses at 2, 4, and 8 weeks after OA induction. Results We confirmed that disuse atrophy of the articular cartilage was caused by thinning of the articular cartilage and the decrease in matrix staining for the nonloading period of 4 weeks. The OARSI scores and histomorphological analyses revealed that OA progressed significantly wider and deeper in the HS-OA group than in the OA group over time. In the sham group, disuse atrophy of the articular cartilage recovered at 2 weeks after reloading. Conclusions This study revealed that OA progressed faster in cartilage atrophy than in normal articular cartilage. Further studies are required for investigating the mechanisms of disuse atrophy of cartilage and its association with OA using the biochemical and immunohistochemical analysis.


Sign in / Sign up

Export Citation Format

Share Document