scholarly journals Mapping the probability of forest snow disturbances in Finland

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254876
Author(s):  
Susanne Suvanto ◽  
Aleksi Lehtonen ◽  
Seppo Nevalainen ◽  
Ilari Lehtonen ◽  
Heli Viiri ◽  
...  

The changing forest disturbance regimes emphasize the need for improved damage risk information. Here, our aim was to (1) improve the current understanding of snow damage risks by assessing the importance of abiotic factors, particularly the modelled snow load on trees, versus forest properties in predicting the probability of snow damage, (2) produce a snow damage probability map for Finland. We also compared the results for winters with typical snow load conditions and a winter with exceptionally heavy snow loads. To do this, we used damage observations from the Finnish national forest inventory (NFI) to create a statistical snow damage occurrence model, spatial data layers from different sources to use the model to predict the damage probability for the whole country in 16 x 16 m resolution. Snow damage reports from forest owners were used for testing the final map. Our results showed that best results were obtained when both abiotic and forest variables were included in the model. However, in the case of the high snow load winter, the model with only abiotic predictors performed nearly as well as the full model and the ability of the models to identify the snow damaged stands was higher than in other years. The results showed patterns of forest adaptation to high snow loads, as spruce stands in the north were less susceptible to damage than in southern areas and long-term snow load reduced the damage probability. The model and the derived wall-to-wall map were able to discriminate damage from no-damage cases on a good level (AUC > 0.7). The damage probability mapping approach identifies the drivers of snow disturbances across forest landscapes and can be used to spatially estimate the current and future disturbance probabilities in forests, informing practical forestry and decision-making and supporting the adaptation to the changing disturbance regimes.

2020 ◽  
Author(s):  
S Suvanto ◽  
A Lehtonen ◽  
S Nevalainen ◽  
I Lehtonen ◽  
H Viiri ◽  
...  

AbstractThe changing forest disturbance regimes emphasize the need for improved damage risk information. In this study, our aim was to improve the current understanding of snow damage risks by assessing the importance of abiotic factors, particularly the modelled snow load on tree crowns, versus forest properties in predicting the probability of snow damage, producing a snow damage probability map for Finland and test its performance, and comparing the results for winters with typical snow load conditions and a winter with exceptionally heavy snow loads. To do this, we used damage observations from the Finnish national forest inventory (NFI) to create a statistical snow damage occurrence model, spatial data layers from different sources to use the model to predict the damage probability for the whole country in 16 × 16 m resolution. Snow damage reports in forest use declarations were used for testing the final map. Our results showed that best results were obtained when both abiotic and forest variables were included in the model. However, in the case of the high snow load winter, the model with only abiotic predictors performed nearly as well as the full model. The statistical models were also able to identify the snow damage stands more accurately for the heavy snow load winter. The two tested statistical modelling methods. The snow damage model and the derived wall-to-wall probability map were able to discriminate between the damage and no-damage cases on a good level. The model and the damage probability mapping approach identifies the drivers of and susceptibility factors to snow damage across forest landscapes. Moreover, it can be used to estimate the concurrent and future snow damage risks in forests, which informs practical forestry and decision-making regarding climate change mitigation and adaptation of forestry.


2007 ◽  
pp. 13-22 ◽  
Author(s):  
T. K. Yurkovskaya

I have focused only on some features of structure in the taiga vegetation cover. In conclusion I would like to tell some words about the causes of complicated space structure of the taiga and tundra vegetation cover. The causes of latitudinal differentiation are climatic undoubtedly, but heterogeneity of vegetation cover within the limits of tundra and taiga subzones is accounted for different factors. In tundra abiogenic factors prevail, first of all the permafrost processes. That is the reason why tundra vegetation cover is so sensible to any disturbances and so hard regenerates after various transformations. In taiga the space structure is mostly the result of self-regulation and self- restoration of biota. The abiotic factors, certainly, play significant role, but they recede to the second plan. So we showed that in the north and middle taiga the structure of vegetation cover, during the Holocene up to present time, is determined in many respects by the increasing role of mires. Suffice it to look at the map of distribution of mires in order to estimate their role in vegetation cover of the easteuropean taiga (Yurkovskaya, 1980). So, the increase of mire area on the Russian Plain in m2/year per 1000 ha varies between 200 and 700, the average increas is ca 300—400 m2/year (Elina et all., 2000). The mires favour peniplenization and unite the separate areas of forest communities into the whole by means of forming the buffer paludificated territories (various hydrophilous variants of forest communities). But if mires, at all their stability, after destroying practically don't restore, the forests even after continuous cuttings restore their structure and composition through the series of successional stages unless an ecotope is damaged completely. Hence the space structure of taiga is the result, first of all, self development and self regulation of its vegetation cover. But, as it is known, at present time the process of destruction of natural biota has gone too far that the question arises not only about supporting its state and structure but also about the survival of the mankind itself. In this regard the vegetation map of Europe is the invaluable basis, which gives the starting point for all conservational, ecological and economical measures. But it is important to learn reading and using the map. And this is one of our actual goals.


2011 ◽  
Vol 17 (9) ◽  
pp. 2842-2852 ◽  
Author(s):  
RUPERT SEIDL ◽  
MART-JAN SCHELHAAS ◽  
MANFRED J. LEXER

2004 ◽  
Vol 61 (3) ◽  
pp. 476-486 ◽  
Author(s):  
Delphine Danancher ◽  
Jacques Labonne ◽  
Roger Pradel ◽  
Philippe Gaudin

In this study, capture–mark–recapture statistics were applied to spatial recapture histories to assess the intensity of fish restricted movements along the longitudinal axis of a river using a previously described model for survival and recruitment analysis. Adapting the stopover estimation method to spatial data, movement probabilities were then used to estimate space used at the population scale. This capture–recapture estimates of space used in streams (CRESUS) method may thus be seen as a complementary tool of classic home range methods and should be used to explore the consequence of behavioural strategies on population mechanisms. We propose a methodological example where movements and space use strategies of a Zingel asper (percid) population in the Beaume River (Ardèche, France) were directly estimated at the population scale taking account of the effects of different biotic or abiotic factors. Results showed differences in Z. asper space use patterns among sexes, periods of biological cycle (growing and spawning period), and types of mesohabitat. Downstream movements were more important during the spawning period and by the way the riffle was more intensively used.


2021 ◽  
Vol 4 ◽  
pp. 1-5
Author(s):  
Dilbarkhon Fazilova ◽  
Hasan Magdiev

Abstract. The classical geodetic coordinate system (CS42) in Uzbekistan uses the Krasovsky ellipsoid. The implementation of new information technologies, such as the Global Navigation Satellite System, became the basis for the development of a new national open geocentric coordinate system. This paper describes the development of a distortion grid for transforming horizontal spatial data from the local geodetic datum CS42 to a geocentric datum WGS84 for 1:100000 scale maps of the Fergana Valley in Uzbekistan. A first version of the distortion grid file has been created for transforming between CS42 and WGS84 for the whole territory of the country. The significant influence of the longitudinal drift of the region has been confirmed. The grid was used to transform topographic maps at a scale of 1:100000 for the Fergana Valley. Changing the map datum has shifted the grid of coordinate systems by 70 m in the East and 7 m in the North.


Author(s):  
Robert Y. George ◽  
Robert J. Menzies

SynopsisIn this paper the subject of faunal zonation in the ocean floor from the intertidal, and over the continental shelf, slope and rise and to the abyssal plain is examined on the basis of faunal change at the generic and species level. The region investigated over a period of five years aboard R/V Eastward is a Beaufort-Bermuda transect, approximately 75 kilometres wide and 500 kilometres long and bounded between 32° and 36°N latitude and 64° and 79°W longitude. A new method, involving numerical indices reflecting changes in the composition of taxa, endemism and diversity between adjacent depth levels, was developed for defining faunal boundaries. Isotherms and isobaths utilised by earlier authors for characterising deep-sea boundary on a global scale do not coincide with natural faunal boundaries. This study analyses the vertical distribution of 128 species of isopod crustaceans and 28 species of large epibenthic invertebrates. The zonation patterns seem to correspond with correlations in environmental conditions such as currents, topography and sediments.We suggest four major vertical faunal provinces, characterised at the generic level, namely (1) the Intertidal Faunal Province; (2) the Shelf Faunal Province; (3) the Archibenthal Zone of Transition; and (4) the Abyssal Faunal Province and internal zones within these characterised at the species level. The main aspects of interest include the presence of a narrow ‘meso abyssal zone’ with a species maximum, the demonstration of the true transitional nature of the Archibenthal Zone in biotic and abiotic factors and the characteristic low-biomass Red Clay environment showing definite faunal isolation from the continental margin.


2018 ◽  
Vol 17 (2) ◽  
pp. 65-80
Author(s):  
Eva Stopková

The paper summarizes the geodetic contribution for the Slovak team within the joint Polish-Slovak archaeological mission at Tell el-Retaba in Egypt. Surveying work at archaeological excavations is usually influenced by somewhat specific subject of study and extreme conditions, especially at the missions in the developing countries. The case study describes spatial data development according to the archaeological conventions in order to document spatial relationships between the objects in excavated trenches. The long-term sustainability of surveying work at the site has been ensured by detailed metadata recording. Except the trench mapping, Digital Elevation Model has been calculated for the study area and for the north-eastern part of the site, with promising preliminary results for further detection and modelling of archaeological structures. In general, topographic mapping together with modern technologies like Photogrammetry, Satellite Imagery, and Remote Sensing provide valuable data sources for spatial and statistical modelling of the sites; and the results offer a different perspective for the archaeological research.


2019 ◽  
Vol 11 (17) ◽  
pp. 2019 ◽  
Author(s):  
Sergio Fagherazzi ◽  
Giovanna Nordio ◽  
Keila Munz ◽  
Daniele Catucci ◽  
William S. Kearney

Retreat of coastal forests in relation to sea level rise has been widely documented. Recent work indicates that coastal forests on the Delmarva Peninsula, United States, can be differentiated into persistence and regenerative zones as a function of sea-level rise and storm events. In the lower persistence zone trees cannot regenerate because of frequent flooding and high soil salinity. This study aims to verify the existence of these zones using spectral remote sensing data, and determine whether the effect of large storm events that cause damage to these forests can be detected from satellite images. Spectral analysis confirms a significant difference in average Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) values in the proposed persistence and regenerative zones. Both NDVI and NDWI indexes decrease after storms triggering a surge above 1.3 m with respect to the North American Vertical Datum of 1988 (NAVD88). NDWI values decrease more, suggesting that this index is better suited to detect the effect of hurricanes on coastal forests. In the regenerative zone, both NDVI and NDWI values recover three years after a storm, while in the persistence zone the NDVI and NDWI values keep decreasing, possibly due to sea level rise causing vegetation stress. As a result, the forest resilience to storms in the persistence zone is lower than in the regenerative zone. Our findings corroborate the ecological ratchet model of coastal forest disturbance.


2008 ◽  
Vol 8 (1) ◽  
pp. 1-8 ◽  
Author(s):  
U. Strasser

Abstract. In January/February 2006, heavy snowfalls in Bavaria (Germany) lead to a series of infrastructural damage of catastrophic nature. Since on many collapsed roofs the total snow load was not exceptional, serious engineering deficiencies in roof construction and a sudden rise in the total snow load were considered to be the trigger of the events. An analysis of the then meteorological conditions reveals, that the early winter of 2005/2006 was characterised by an exceptional continuous snow cover, temperatures remained around the freezing point and no significant snowmelt was evident. The frequent freezing/thawing cycles were followed by a general compaction of the snow load. This resulted in a re-distribution and a new concentration of the snow load on specific locations on roofs. With respect to climate change, the question arises as to whether the risks relating to snow loads will increase. The future probability of a continuous snow cover occurrence with frequent freezing/thawing cycles will probably decline due to predicted higher temperatures. However, where temperatures remain low, an increase in winter precipitation will result in increased snow loads. Furthermore, the variability of extremes is predicted to increase. If heavy snowfall events are more frequent, the risk of a trigger event will likely increase. Finally, an attempt will be made here in this paper to outline a concept for an operational warning system for the Bavarian region. This system envisages to predict the development and risk of critical snow loads for a 3-day time period, utilising a combination of climate and snow modelling data and using this together with a snow pillow device (located on roofs) and the results of which.


Sign in / Sign up

Export Citation Format

Share Document