scholarly journals Variations in Persistence and Regenerative Zones in Coastal Forests Triggered by Sea Level Rise and Storms

2019 ◽  
Vol 11 (17) ◽  
pp. 2019 ◽  
Author(s):  
Sergio Fagherazzi ◽  
Giovanna Nordio ◽  
Keila Munz ◽  
Daniele Catucci ◽  
William S. Kearney

Retreat of coastal forests in relation to sea level rise has been widely documented. Recent work indicates that coastal forests on the Delmarva Peninsula, United States, can be differentiated into persistence and regenerative zones as a function of sea-level rise and storm events. In the lower persistence zone trees cannot regenerate because of frequent flooding and high soil salinity. This study aims to verify the existence of these zones using spectral remote sensing data, and determine whether the effect of large storm events that cause damage to these forests can be detected from satellite images. Spectral analysis confirms a significant difference in average Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) values in the proposed persistence and regenerative zones. Both NDVI and NDWI indexes decrease after storms triggering a surge above 1.3 m with respect to the North American Vertical Datum of 1988 (NAVD88). NDWI values decrease more, suggesting that this index is better suited to detect the effect of hurricanes on coastal forests. In the regenerative zone, both NDVI and NDWI values recover three years after a storm, while in the persistence zone the NDVI and NDWI values keep decreasing, possibly due to sea level rise causing vegetation stress. As a result, the forest resilience to storms in the persistence zone is lower than in the regenerative zone. Our findings corroborate the ecological ratchet model of coastal forest disturbance.

Agriculture ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 246 ◽  
Author(s):  
Baabak Mamaghani ◽  
M. Grady Saunders ◽  
Carl Salvaggio

With the inception of small unmanned aircraft systems (sUAS), remotely sensed images have been captured much closer to the ground, which has meant better resolution and smaller ground sample distances (GSDs). This has provided the precision agriculture community with the ability to analyze individual plants, and in certain cases, individual leaves on those plants. This has also allowed for a dramatic increase in data acquisition for agricultural analysis. Because satellite and manned aircraft remote sensing data collections had larger GSDs, self-shadowing was not seen as an issue for agricultural remote sensing. However, sUAS are able to image these shadows which can cause issues in data analysis. This paper investigates the inherent reflectance variability of vegetation by analyzing six Coneflower plants, as a surrogate for other cash crops, across different variables. These plants were measured under different forecasts (cloudy and sunny), at different times (08:00 a.m., 09:00 a.m., 10:00 a.m., 11:00 a.m. and 12:00 p.m.), and at different GSDs (2, 4 and 8 cm) using a field portable spectroradiometer (ASD Field Spec). In addition, a leafclip spectrometer was utilized to measure individual leaves on each plant in a controlled lab environment. These spectra were analyzed to determine if there was any significant difference in the health of the various plants measured. Finally, a MicaSense RedEdge-3 multispectral camera was utilized to capture images of the plants every hour to analyze the variability produced by a sensor designed for agricultural remote sensing. The RedEdge-3 was held stationary at 1.5 m above the plants while collecting all images, which produced a GSD of 0.1 cm/pixel. To produce 2, 4, and 8 cm GSD, the MicaSense RedEdge-3 would need to be at an altitude of 30.5 m, 61 m and 122 m respectively. This study did not take background effects into consideration for either the ASD or MicaSense. Results showed that GSD produced a statistically significant difference (p < 0.001) in Normalized Difference Vegetation Index (NDVI, a commonly used metric to determine vegetation health), R 2 values demonstrated a low correlation between time of day and NDVI, and a one-way ANOVA test showed no statistically significant difference in the NDVI computed from the leafclip probe (p-value of 0.018). Ultimately, it was determined that the best condition for measuring vegetation reflectance was on cloudy days near noon. Sunny days produced self-shadowing on the plants which increased the variability of the measured reflectance values (higher standard deviations in all five RedEdge-3 channels), and the shadowing of the plants decreased as time approached noon. This high reflectance variability in the coneflower plants made it difficult to accurately measure the NDVI.


Author(s):  
A. Malah ◽  
H. Bahi ◽  
H. Radoine ◽  
M. Maanan ◽  
H. Mastouri

Abstract. By 2050, Most of the world’s population will live in cities, this demographic explosion will lead to significant urban development at the expanse of natural land which may harm the environmental quality. Consequently, assessing and modeling the urban environmental quality (UEQ) is requisite for efficient urban sprawl control and better city planning and management. The present study proposes a methodology to model and assess the environment of the urban system by developing the urban environmental quality index (UEQI) based on remote sensing data. Five environmental indicators were derived from the Landsat OLI image namely, Modified Normalized Difference Impervious Surface Index (MNDISI), Modified Normalized Difference, Water Index (MNDWI), Normalized difference vegetation Index (NDVI), Normalized difference built-up Index (NDBI) and Soil adjusted vegetation index (SAVI). Using the Principal Component Analysis (PCA) the urban environmental quality index was computed for the 17 communes of Casablanca city. The UEQI values were spatially mapped under three classes (good, moderate, and poor). The results obtained from the analysis showed a significant difference in the term of UEQI values among the communes. In addition, the environmental quality is inadequate in communes with fewer green spaces and more impervious surfaces. The outcomes of this work can serve as an efficient tool to determine the most critical interventions to be made by the authority for current and future urban planning and land/resource management.


2012 ◽  
Vol 16 (7) ◽  
pp. 1845-1862 ◽  
Author(s):  
F. Jørgensen ◽  
W. Scheer ◽  
S. Thomsen ◽  
T. O. Sonnenborg ◽  
K. Hinsby ◽  
...  

Abstract. Geophysical techniques are increasingly being used as tools for characterising the subsurface, and they are generally required to develop subsurface models that properly delineate the distribution of aquifers and aquitards, salt/freshwater interfaces, and geological structures that affect groundwater flow. In a study area covering 730 km2 across the border between Germany and Denmark, a combination of an airborne electromagnetic survey (performed with the SkyTEM system), a high-resolution seismic survey and borehole logging has been used in an integrated mapping of important geological, physical and chemical features of the subsurface. The spacing between flight lines is 200–250 m which gives a total of about 3200 line km. About 38 km of seismic lines have been collected. Faults bordering a graben structure, buried tunnel valleys, glaciotectonic thrust complexes, marine clay units, and sand aquifers are all examples of geological structures mapped by the geophysical data that control groundwater flow and to some extent hydrochemistry. Additionally, the data provide an excellent picture of the salinity distribution in the area and thus provide important information on the salt/freshwater boundary and the chemical status of groundwater. Although the westernmost part of the study area along the North Sea coast is saturated with saline water and the TEM data therefore are strongly influenced by the increased electrical conductivity there, buried valleys and other geological elements are still revealed. The mapped salinity distribution indicates preferential flow paths through and along specific geological structures within the area. The effects of a future sea level rise on the groundwater system and groundwater chemistry are discussed with special emphasis on the importance of knowing the existence, distribution and geometry of the mapped geological elements, and their control on the groundwater salinity distribution is assessed.


2021 ◽  
Vol 13 (6) ◽  
pp. 1131
Author(s):  
Tao Yu ◽  
Pengju Liu ◽  
Qiang Zhang ◽  
Yi Ren ◽  
Jingning Yao

Detecting forest degradation from satellite observation data is of great significance in revealing the process of decreasing forest quality and giving a better understanding of regional or global carbon emissions and their feedbacks with climate changes. In this paper, a quick and applicable approach was developed for monitoring forest degradation in the Three-North Forest Shelterbelt in China from multi-scale remote sensing data. Firstly, Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Ratio Vegetation Index (RVI), Leaf Area Index (LAI), Fraction of Photosynthetically Active Radiation (FPAR) and Net Primary Production (NPP) from remote sensing data were selected as the indicators to describe forest degradation. Then multi-scale forest degradation maps were obtained by adopting a new classification method using time series MODerate Resolution Imaging Spectroradiometer (MODIS) and Landsat Enhanced Thematic Mapper Plus (ETM+) images, and were validated with ground survey data. At last, the criteria and indicators for monitoring forest degradation from remote sensing data were discussed, and the uncertainly of the method was analyzed. Results of this paper indicated that multi-scale remote sensing data have great potential in detecting regional forest degradation.


2021 ◽  
Vol 13 (13) ◽  
pp. 7503
Author(s):  
Alexander Boest-Petersen ◽  
Piotr Michalak ◽  
Jamal Jokar Arsanjani

Anthropogenically-induced climate change is expected to be the contributing cause of sea level rise and severe storm events in the immediate future. While Danish authorities have downscaled the future oscillation of sea level rise across Danish coast lines in order to empower the coastal municipalities, there is a need to project the local cascading effects on different sectors. Using geospatial analysis and climate change projection data, we developed a proposed workflow to analyze the impacts of sea level rise in the coastal municipalities of Guldborgsund, located in Southeastern Denmark as a case study. With current estimates of sea level rise and storm surge events, the island of Falster can expect to have up to 19% of its landmass inundated, with approximately 39% of the population experiencing sea level rise directly. Developing an analytical workflow can allow stakeholders to understand the extent of expected sea level rise and consider alternative methods of prevention at the national and local levels. The proposed approach along with the choice of data and open source tools can empower other communities at risk of sea level rise to plan their adaptation.


The development of the area, of the Thames Estuary is briefly traced since the late Cretaceous period, with its present outline being due to a combination of factors. The overall subsidence of the North Sea area, the ‘Alpine5 fold movements, and the transgression of the sea since the retreat of the Weichselian icesheets have all contributed. The positions of the shore-line during the critical phase, 9600 b.p. to 8000 b.p., of this last transgression of the sea are shown. Subsequent to this main transgressive phase, erosion of the shoreline has been rapid due to storm-waves and tidal current action. An estimation of the average rate of subsidence and/or sea-level rise is given based on the concept of sedimentary equilibrium in which a figure of 12.7 cm (5 in) per century is arrived at.


2018 ◽  
Vol 7 (4) ◽  
pp. 297-306 ◽  
Author(s):  
Amal Y. Aldhebiani ◽  
Mohamed Elhag ◽  
Ahmad K. Hegazy ◽  
Hanaa K. Galal ◽  
Norah S. Mufareh

Abstract. Wadi Yalamlam is known as one of the significant wadis in the west of Saudi Arabia. It is a very important water source for the western region of the country. Thus, it supplies the holy places in Mecca and the surrounding areas with drinking water. The floristic composition of Wadi Yalamlam has not been comprehensively studied. For that reason, this work aimed to assess the wadi vegetation cover, life-form presence, chorotype, diversity, and community structure using temporal remote sensing data. Temporal datasets spanning 4 years were acquired from the Landsat 8 sensor in 2013 as an early acquisition and in 2017 as a late acquisition to estimate normalized difference vegetation index (NDVI) changes. The wadi was divided into seven stands. Stands 7, 1, and 3 were the richest with the highest Shannon index values of 2.98, 2.69, and 2.64, respectively. On the other hand, stand 6 has the least plant biodiversity with a Shannon index of 1.8. The study also revealed the presence of 48 different plant species belonging to 24 families. Fabaceae (17 %) and Poaceae (13 %) were the main families that form most of the vegetation in the study area, while many families were represented by only 2 % of the vegetation of the wadi. NDVI analysis showed that the wadi suffers from various types of degradation of the vegetation cover along with the wadi main stream.


2021 ◽  
Author(s):  
Ruby R. Pennell

The climate change phenomenon occurring across the globe is having an increasingly alarming effect on Canada’s Arctic. Warming temperatures can have wide spanning impacts ranging from more rain and storm events, to increasing runoff, thawing permafrost, sea ice decline, melting glaciers, ecosystem disruption, and more. The purpose of this MRP was to assess the climate-induced landscape changes, including glacial loss and vegetation change, in Pond Inlet, Nunavut. A time series analysis was performed using the intervals 1989-1997, 1997-2005, and 2005-2016. The two methods for monitoring change were 1) the Normalized Difference Snow Index (NDSI) to detect glacial change, and 2) the Normalized Difference Vegetation Index (NDVI) to detect vegetation change, both utilizing threshold and masking techniques to increase accuracy. It was found that the percent of glacial loss and vegetation change in Pond Inlet had consistently increased throughout each time period. The area of glacial loss grew through each period to a maximum of 376 km2 of glacial loss in the last decade. Similarly, the area of the Arctic tundra that experienced vegetation change increased in each time period to a maximum of 660 km2 in the last decade. This vegetation change was characterized by overall increasing values of NDVI, revealing that many sections of the Arctic tundra in Pond Inlet were increasing in biomass. However, case study analysis revealed pixel clustering around the lower vegetation class thresholds used to classify change, indicating that shifts between these vegetation classes were likely exaggerated. Shifts between the higher vegetation classes were significant, and were what contributed to the most change in the last decade. The observations of higher glacial melt and increases in biomass are occurring in parallel with the increasing temperatures in Pond Inlet. Relevant literature in the Arctic agrees with the findings of this MRP that there are significant trends of glacial loss and vegetation greening and many studies attribute this directly to climate warming. The results of this study provide the necessary background with regards to landscape changes which could be used in future field studies investigating the climate induced changes in Pond Inlet. This study also demonstrates that significant landscape modifications have occurred in the recent decades and there is a strong need for continued research and monitoring of climate induced changes.


2021 ◽  
Author(s):  
Haddad Amar ◽  
Beldjazia Amina ◽  
Kadi Zahia ◽  
Redjaimia Lilia ◽  
Rached-Kanouni Malika

Mediterranean ecosystems are considered particularly sensitive to climate change. Any change in climatic factors affects the structure and functioning of these ecosystems and has an influence on plant productivity. The main objective of this work is to characterize one of the Mediterranean ecosystems; the Chettaba forest massif (located in the North-East of Algeria) from a vegetation point of view and their link with monthly variations using Landsat 8 satellite images from five different dates (June 25, 2017, July 27, 2017, August 28, 2017, October 15, 2017). The comparison of NDVI values in Aleppo pine trees was performed using analysis of variance and the use of Friedman's non-parametric test. The Mann-Kendall statistical method was applied to the monthly distribution of NDVI values to detect any trends in the data over the study period. The statistical results of NDVI of Aleppo pine trees indicate that the maximum value is recorded in the month of June, while the lowest values are observed in the month of August where the species studied is exposed to periods of thermal stress.


2012 ◽  
Vol 23 (2) ◽  
pp. 139-172
Author(s):  
Abdullah Salman Alsalman Abdullah Salman Alsalman

Noting that Khartoum represents the most rapidly expanding city in the Sudan and taking into account that change detection operations are seldom , the present study has been initiated to attempt to produce work that synthesizes land use/land cover (LULC) to investigate change detection using GIS, remote sensing data and digital image processing techniques; estimate, evaluate and map changes that took place in the city from 1975 to 2003. The experiment used the techniques of visual inspection, write-function-memoryinsertion, image differencing, image transformation i.e. normalized difference vegetation index (NDVI), tasseled cap, principal component analysis (PCA), post-classification comparison and GIS. The results of all these various techniques were used by the authors to study change detection of the geographic locale of the test area. Image processing and GIS techniques were performed using Intergraph Image analyst 8.4 and GeoMedia professional version 6, ERDAS Imagine 8.7, and ArcGIS 9.2. Results obtained were discussed and analyzed in a comparative manner and a conclusion regarding the best method for change detection of the test area was derived.


Sign in / Sign up

Export Citation Format

Share Document