Vegetation structure of tundra and taiga on the map of the natural vegetation of Europe

2007 ◽  
pp. 13-22 ◽  
Author(s):  
T. K. Yurkovskaya

I have focused only on some features of structure in the taiga vegetation cover. In conclusion I would like to tell some words about the causes of complicated space structure of the taiga and tundra vegetation cover. The causes of latitudinal differentiation are climatic undoubtedly, but heterogeneity of vegetation cover within the limits of tundra and taiga subzones is accounted for different factors. In tundra abiogenic factors prevail, first of all the permafrost processes. That is the reason why tundra vegetation cover is so sensible to any disturbances and so hard regenerates after various transformations. In taiga the space structure is mostly the result of self-regulation and self- restoration of biota. The abiotic factors, certainly, play significant role, but they recede to the second plan. So we showed that in the north and middle taiga the structure of vegetation cover, during the Holocene up to present time, is determined in many respects by the increasing role of mires. Suffice it to look at the map of distribution of mires in order to estimate their role in vegetation cover of the easteuropean taiga (Yurkovskaya, 1980). So, the increase of mire area on the Russian Plain in m2/year per 1000 ha varies between 200 and 700, the average increas is ca 300—400 m2/year (Elina et all., 2000). The mires favour peniplenization and unite the separate areas of forest communities into the whole by means of forming the buffer paludificated territories (various hydrophilous variants of forest communities). But if mires, at all their stability, after destroying practically don't restore, the forests even after continuous cuttings restore their structure and composition through the series of successional stages unless an ecotope is damaged completely. Hence the space structure of taiga is the result, first of all, self development and self regulation of its vegetation cover. But, as it is known, at present time the process of destruction of natural biota has gone too far that the question arises not only about supporting its state and structure but also about the survival of the mankind itself. In this regard the vegetation map of Europe is the invaluable basis, which gives the starting point for all conservational, ecological and economical measures. But it is important to learn reading and using the map. And this is one of our actual goals.

2017 ◽  
Vol 59 (3) ◽  
pp. 219-230 ◽  
Author(s):  
Elena N. Nakvasina ◽  
Alexey G. Volkov ◽  
Nadezhda A. Prozherina

Abstract This research presents the variability in the survival and growth for 27 provenances of spruce (Picea abies (L.) Karst. and Picea obovata (Ledeb.)). All the tests were carried out in Russia, Arkhangelsk region, 62º 54’ N, 40º 24’ E, in the northernmost site of the State Geographic Network, established in 1977. For the research on the spruce provenances, standard methods for studying the geographic variation of the main forest-forming species were used. Growth rates of provenances were correlated with their geographical coordinates and climatic characteristics. Data was expressed in standard deviation units to select the best in growth provenances. Despite the significant differences in the location of the original stands (up to 12º N and 37º E), variability in survival, height and diameter is low (coefficient of variation is 12.2–19. 0%). Obtained data indicated that provenances’ growth is correlated on longitude of the location rather than on the latitude. Diameter and average height of provenances significantly depend on annual rainfall. The height of provenance is mostly dependent on the location of the initial habitats and their climatic characteristics. It is also related to the length of the growing season and the air temperature (annual average and in January). Groups of the provenances of the best and the worst growth were distinguished. The group of the best ones on the integral indicator (volume stand) includes provenances of the western origin represented by P. abies and its immediate hybrids – Karelia (3), Vologda (24), Leningrad (5), Pskov (7) and Moscow (29) Regions – and provenances of the eastern one represented by P. obovata – Komi (26) and Perm (38) Region. High plasticity of spruce (P. abies (L.) Karst. × P. obovata (Ledeb.)), growing within the Russian Plain, in sufficiently favourable conditions of middle taiga subzone (Arkhangelsk Region, Russia) was proved.


2021 ◽  
Vol 63 (2) ◽  
pp. 138-149
Author(s):  
Elena N. Nakvasina ◽  
Nadezhda A. Prozherina

Abstract Species with continuous distribution area will be impacted by climate change in different ways. That is related to the population’s geographical position and climate features of the population formation. Short-term response of Scots pine (Pinus sylvestris L.) was studied with taken into consideration intraspecies features of populations. Provenance tests in the Arkhangelsk (62.60 N, 39.98 E) and Vologda (62.60 N, 39.98E) regions located in the north of the Russian Plain were used. Provenances collection (23 provenances from the northern, middle, and southern taiga subzones and mixed forest zone) from areas with different climate characteristics was considered. Clinal variability and a reaction norm of vegetative and generative response to various levels of temperature change and seed transfer were studied. Average actual height and diameter values for 31-year provenances and calculated values for provenances were compared using ‘latitudinal growth coefficient’ proposed by I.V. Volosevich (1984) for the north of the Russian Plain. Provenance reproductive ability response was assessed using seed-bearing trees’ numbers in provenances of the 1st class of age. Pine growing in the north of the Russian Plain would respond to warming by productivity increasing more significantly than pine growing in the south. Response of pine from the northern and middle taiga subzones on climate warming can be expected on 1.01 m and 1.12 cm to temperature rise by 100°C for height and diameter, and 0.85 m and 0.93 cm for seeds transfer to 1 degree of northern latitude to southward. Probable reaction norm for pine reproduction potential under temperature change by 100°C of the sum of the temperatures above 10ºС and seed transfer by 1 degree of northern latitude can be expected about 6%.


1995 ◽  
pp. 3-21
Author(s):  
S. S. Kholod

One of the most difficult tasks in large-scale vegetation mapping is the clarification of mechanisms of the internal integration of vegetation cover territorial units. Traditional way of searching such mechanisms is the study of ecological factors controlling the space heterogeneity of vegetation cover. In essence, this is autecological analysis of vegetation. We propose another way of searching the mechanisms of territorial integration of vegetation. It is connected with intracoenotic interrelation, in particular, with the changing role of edificator synusium in a community along the altitudinal gradient. This way of searching is illustrated in the model-plot in subarctic tundra of Central Chukotka. Our further suggestion concerns the way of depicting these mechanisms on large-scale vegetation map. As a model object we chose the catena, that is the landscape formation including all geomorphjc positions of a slope, joint by the process of moving the material down the slope. The process of peneplanation of a mountain system for a long geological time favours to the levelling the lower (accumulative) parts of slopes. The colonization of these parts of the slope by the vegetation variants, corresponding to the lowest part of catena is the result of peneplanation. Vegetation of this part of catena makes a certain biogeocoenotic work which is the levelling of the small infralandscape limits and of the boundaries in vegetation cover. This process we name as the continualization on catena. In this process the variants of vegetation in the lower part of catena are being broken into separate synusiums. This is the process of decumbation of layers described by V. B. Sochava. Up to the slope the edificator power of the shrub synusiums sharply decreases. Moss and herb synusium have "to seek" the habitats similar to those under the shrub canopy. The competition between the synusium arises resulting in arrangement of a certain spatial assemblage of vegetation cover elements. In such assemblage the position of each element is determined by both biotic (interrelation with other coenotic elements) and abiotic (presence of appropriate habitats) factors. Taking into account the biogeocoenotic character of the process of continualization on catena we name such spatial assemblage an exolutionary-biogeocoenotic series. The space within each evolutionary-biogeocoenotic series is divided by ecological barriers into some functional zones. In each of the such zones the struggle between synusiums has its individual expression and direction. In the start zone of catena (extensive pediment) the interrelations of synusiums and layers control the mutual spatial arrangement of these elements at the largest extent. Here, as a rule, there predominate edificator synusiums of low and dwarfshrubs. In the first order limit zone (the bend of pediment to the above part of the slope) one-species herb and moss synusiums, oftenly substituting each other in similar habitats, get prevalence. In the zone of active colonization of slope (denudation slope) the coenotic factor has the least role in the spatial distribution of the vegetation cover elements. In particular, phytocoenotic interactions take place only within separate microcoenoses of herbs, mosses and lichens. In the zone of the attenuation of continualization process (the upper most parts of slope, crests) phytocoenotic interactions are almost absent and the spatial distribution of vegetation cover elements depends exclusively on the abiotic factors. The principal scheme of the distribution of vegetation cover elements and the disposition of functional zones on catena are shown on block-diagram (fig. 1).


2000 ◽  
Vol 151 (12) ◽  
pp. 502-507
Author(s):  
Christian Küchli

Are there any common patterns in the transition processes from traditional and more or less sustainable forest management to exploitative use, which can regularly be observed both in central Europe and in the countries of the South (e.g. India or Indonesia)? Attempts were made with a time-space-model to typify those force fields, in which traditional sustainable forest management is undermined and is then transformed into a modern type of sustainable forest management. Although it is unlikely that the history of the North will become the future of the South, the glimpse into the northern past offers a useful starting point for the understanding of the current situation in the South, which in turn could stimulate the debate on development. For instance, the patterns which stand behind the conflicts on forest use in the Himalayas are very similar to the conflicts in the Alps. In the same way, the impact of socio-economic changes on the environment – key word ‹globalisation› – is often much the same. To recognize comparable patterns can be very valuable because it can act as a stimulant for the search of political, legal and technical solutions adapted to a specific situation. For the global community the realization of the way political-economic alliances work at the head of the ‹globalisationwave›can only signify to carry on trying to find a common language and understanding at the negotiation tables. On the lee side of the destructive breaker it is necessary to conserve and care for what survived. As it was the case in Switzerland these forest islands could once become the germination points for the genesis of a cultural landscape, where close-to-nature managed forests will constitute an essential element.


2007 ◽  
Vol 14 (4) ◽  
pp. 313-319
Author(s):  
Benedikt Buchner

AbstractIndustry-sponsored medical education is a much disputed issue. So far, there has been no regulatory framework which provides clear and definite rules as to whether and under what circumstances the sponsorship of medical education is acceptable. State regulation does not exist, or confines itself to a very general principle. Professional regulation, even though applied frequently, is rather vague and indefinite, raising the general question as to whether self-regulation is the right approach at all. Certainly, self-regulation by industry cannot and should not replace other regulatory approaches. Ultimately, advertising law in general and the European Directive 2001/83/EC specifically, might be a good starting point in providing legal certainty and ensuring the independence of medical education. Swiss advertising law illustrates how the principles of the European Directive could be implemented clearly and unambiguously.


2004 ◽  
Vol 61 (8) ◽  
pp. 1398-1409 ◽  
Author(s):  
Morten Vinther ◽  
Stuart A. Reeves ◽  
Kenneth R. Patterson

Abstract Fishery management advice has traditionally been given on a stock-by-stock basis. Recent problems in implementing this advice, particularly for the demersal fisheries of the North Sea, have highlighted the limitations of the approach. In the long term, it would be desirable to give advice that accounts for mixed-fishery effects, but in the short term there is a need for approaches to resolve the conflicting management advice for different species within the same fishery, and to generate catch or effort advice that accounts for the mixed-species nature of the fishery. This paper documents a recent approach used to address these problems. The approach takes the single-species advice for each species in the fishery as a starting point, then attempts to resolve it into consistent catch or effort advice using fleet-disaggregated catch forecasts in combination with explicitly stated management priorities for each stock. Results are presented for the groundfish fisheries of the North Sea, and these show that the development of such approaches will also require development of the ways in which catch data are collected and compiled.


2021 ◽  
Vol 9 ◽  
Author(s):  
Şerban Procheş ◽  
Syd Ramdhani ◽  
Alice C. Hughes ◽  
Lian Pin Koh

The plight of Southeast Asia’s animals, plants and ecosystems in the face of unsustainable exploitation and habitat destruction has been illustrated in several recent studies, despite often falling outside the global discourse on global conservation priorities. Here, we collate biogeographic and phylogenetic information to argue that this beleaguered region is one of world’s primary macrorefugia, and possibly its best chance of regaining its natural biodiversity distribution patterns after the current Anthropocene upheaval. The region uniquely combines top diversity values in (a) ancient lineage diversity and (b) cosmopolitan lineage diversity, suggesting that it has acted in the past as a biodiversity museum and source of global colonization. This is at least partly due to the interplay between latitudinal diversity gradients and continental connectivity patterns. However, the peak values in South China/North Indochina for cosmopolitan tetrapods and their sister lineages suggest that a key feature is also the availability of diverse climatic conditions. In particular, the north-south orientation of the mountain ranges here has allowed for rapid recolonization within the region following past climatic changes, resulting in high survival values and overall exceptional relict lineage diversity. From this starting point, global colonization occurred on multiple occasions. It is hoped that, with urgent action, the region can once again fulfill this function.


2012 ◽  
Vol 13 (1) ◽  
pp. 12 ◽  
Author(s):  
H. EL LAKHRACH ◽  
A. HATTOUR ◽  
O. JARBOUI ◽  
K. ELHASNI ◽  
A.A. RAMOS-ESPLA

The aim of this paper is to bring to light the knowledge of marine diversity of invertebrates in Gabes gulf. The spatial distribution of the megabenthic fauna community in Gabes gulf (Tunisia, Eastern Mediterranean Sea), together with the bottom type and vegetation cover, were studied. The abundance of the megabenthic fauna was represented by eight groups: Echinodermata (38%), Crustacea (21%), Tunicata (19%), Mollusca (13%), Porifera (4%), Cnidaria (3%), Bryozoa, and Annelida (2%). It was spatially more concentrated in the coast area of the gulf than in the offshore waters. This area, especially, in Southern Kerkennah, North-est of Gabes and North-east of Djerba appeared to be in a good ecological condition  hosting a variety of species like the paguridsPaguristes eremita and Pagurus cuanensis, the brachyura Medorippe lanata, Inachus doresttensis, the Gastropoda Hexaplex trunculus, Bolinus brandaris, Aporrhais pespelecani, andErosaria turdus, the Bivalvia Fulvia fragilis, the Echinoidea Psammechinus microtuberculatus, Holothuria polii,Ophiothrix fragilis and Antedon mediterranea, and the AscidiaceaAplidium cf. conicum, Didemnum spp, and Microcosmus exasperatus.The species’ compositions of the megabentic fauna community showed clearly that the spatial analysis represented the differences between the community of these two regions (inshore waters and offshore waters). These differences were closely related to peculiar characters of the fauna and biotopes (depth, bottom type and vegetation cover community). The results of the present study should be considered as a necessary starting point for a further analysis of priceless benthic fauna contribution to the marine environment and its organisms.


Sign in / Sign up

Export Citation Format

Share Document