scholarly journals Effects of seed priming treatments on the germination and development of two rapeseed (Brassica napus L.) varieties under the co-influence of low temperature and drought

PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257236
Author(s):  
Zong He Zhu ◽  
Abdul Sami ◽  
Qing Qing Xu ◽  
Ling Ling Wu ◽  
Wen Yin Zheng ◽  
...  

The present study was performed to evaluate the effects of seed priming. This was done by soaking the seeds of two rapeseed cultivars, namely, ZY15 (tolerant to low temperature and drought) and HY49 (sensitive to low temperature and drought), for 12 h in varying solutions: distilled water, 138 mg/L salicylic acid (SA), 300 mg/L gibberellic acid (GA), 89.4 mg/L sodium nitroprusside (SNP), 3000 mg/L calcium chloride (CaCl2), and 30 mg/L abscisic acid (ABA). Primed and non-primed seeds were left to germinate at 15°C and -0.15 MPa (T15W15) and at 25°C and 0 MPa (T25W0), respectively. The results showed that SA, GA, SNP, CaCl2, and ABA significantly improved the germination potential (GP), germination rate (GR), germination index (GI), stem fresh weight (SFW), stem dry weight (SDW), root length (RL), stem length (SL), and seed vigor index (SVI) under T15W15. For ZY15 seeds under T25W0, GA, SNP, CaCl2, and ABA priming reduced the average germination time (96% after 5 days) compared to that of the control (88% after 5 days). For ZY15 seeds under T15W15, SA, SNP, CaCl2, and ABA priming, with respect to the control and water-treated groups, shortened the average germination time (92% after 5 days) compared to that of the control (80% after 5 days). For HY49 seeds under T25W0, GA, SNP, CaCl2, and ABA priming reduced the average germination time (92% after 5 days) compared to that of the control (85% after 5 days). Similarly, for HY49 seeds under T15W15, GA priming shortened the average germination time (89% after 5 days) compared to that of the control (83% after 5 days). These priming agents increased the net photosynthesis, stomatal conductivity, and transpiration rate of rape seedlings under conditions of low temperature and drought stress, while also decreasing intercellular carbon dioxide (CO2) concentrations. Additionally, SA, GA, SNP, CaCl2, and ABA increased superoxide dismutase concentrations (SOD) and ascorbic peroxidase (APX) activities of rape seedlings under stress conditions, while decreasing catalase (CAT) and peroxidase (POD) activities in ZY15 seedlings. In HY49, which is sensitive to low temperature and drought, all priming solutions, except for SNP, led to an increase in SOD activity levels and a decrease in CAT activity levels. Overall, SA, GA, SNP, and CaCl2 increased the concentrations of indoleacetic acid (IAA), GA, ABA, and cytokinin (CTK) in seedlings under stress conditions. Moreover, compared to SA, CaCl2, and ABA, GA (300 mg/L) and SNP (300 mol/L) showed improved priming effects for ZY15 and HY49 under stress conditions.

2004 ◽  
Vol 61 (1) ◽  
pp. 114-117 ◽  
Author(s):  
Warley Marcos Nascimento ◽  
Fernando Antônio Souza de Aragão

A number of important factors may affect seed priming response, including seed quality. Effects of seed vigor on seed priming response were investigated using seed lots of two muskmelon (Cucumis melo L.) cultivars. Seeds of muskmelon, cvs. Mission and Top Net SR were artificially aged at 43°C for 0, 20 and 40 hours. Seeds were primed for six days in darkness at 25°C in KNO3 (0.35 mol L-1) aerated solution. Aged seeds germinated poorly at 17°C. Priming increased germination rate at 17 and 25°C and germination percentage at 17°C. An interaction effect on germination performance between vigor and priming was observed, especially at low temperature. Priming increased germination performance in seeds of low vigor, and the response was cultivar dependent.


Agriculture ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 271
Author(s):  
Muhammad Imran ◽  
Asim Mahmood ◽  
Günter Neumann ◽  
Birte Boelt

Low temperature during germination hinders germination speed and early seedling development. Zn seed priming is a useful and cost-effective tool to improve germination rate and resistance to low temperature stress during germination and early seedling development. Spinach was tested to improve germination and seedling development with Zn seed priming under low temperature stress conditions. Zn priming increased seed Zn concentration up to 48 times. The multispectral imaging technique with VideometerLab was used as a non-destructive method to differentiate unprimed, water- and Zn-primed spinach seeds successfully. Localization of Zn in the seeds was studied using the 1,5-diphenyl thiocarbazone (DTZ) dying technique. Active translocation of primed Zn in the roots of young seedlings was detected with laser confocal microscopy. Zn priming of spinach seeds at 6 mM Zn showed a significant increase in germination rate and total germination under low temperature at 8 °C.


2011 ◽  
Vol 3 (4) ◽  
pp. 113-116 ◽  
Author(s):  
Hamdollah ESKANDARI ◽  
Kamyar KAZEMI

Early emergence and stand establishment of cowpea are considered to be the most important yield-contributing factors in rainfed areas. Laboratory tests and afield experiment were conducted in RCB design in 2011 at a research farm in Ramhormoz, Iran, to evaluate the effects of hydropriming (8, 12 and 16 hours duration) and halo priming (solutions of 1.5% KNO3 and 0.8% NaCl) on seedling vigor and field establishment of cowpea. Analysis of variance of laboratory data showed that hydropriming significantly improved germination rate, seed vigor index, and seedling dry weights. However, germination percentage for seeds primed with KNO3 and non-primed seeds were statistically similar, but higher than those for NaCl priming. Overall, hydropriming treatment was comparatively superior in the laboratory tests. Invigoration of cowpea seeds by hydropriming and NaCl priming resulted in higher seedling emergence and establishment in the field, compared to control and seed priming with KNO3. Seedling emergence rate was also enhanced by priming seeds with water, suggesting that hydropriming is a simple, low cost and environmentally friendly technique for improving seed and seedling vigor of cowpea.


Author(s):  
D. J. A. Najorda ◽  
R. J. G. Rosales

The evaluation of seed priming methods on the seed and seedling performance of soursop was conducted January 9 to April 3, 2019 in San Nicolas, Ilocos Norte, Philippines.  The study was conducted to investigate the effect of seed priming methods  capable of breaking dormancy; improve germination rate; determine the seed vigor of soursop; and identify the best seed priming method that provide better seedling performance. The experimental  treatments (unprimed and three priming methods, hydropriming, halopriming and hormonal priming) were laid out in Completely Randomized Design with three replications. A     total of 20 polyethylene bags were used per treatment per replication with one seed sown in every bag. Alternative way to improve seed and seedling performance is the use of these seed priming methods. The seed and seedling performance of soursop were significantly affected by priming methods. Primed seeds had higher percentage germination rate (PGR) than unprimed seeds. But numerically, the highest PGR was hydropriming. Hormonal priming produced significantly taller seedlings at 10 and 40 days after emergence (DAE) than unprimed seeds and more leaves per seedling at 30 to 50 DAE. Hormonal, hydropriming and halopriming produced significantly higher fresh weight of seedlings than unprimed seeds.


2015 ◽  
Vol 9 (1) ◽  
pp. 6-11
Author(s):  
Abolfazl Masoumi Zavariyan ◽  
Mojtaba Yousefi Rad ◽  
Mohsen Asghari

For investigation of the effect of seed priming by kinetin on germination indices and proline activity of Silybum marianum  L. under drought stress, factorial experiment based on completely randomized design with two factor includingdifferent concentrations of kinetin (0, 10 and 20 ppm) and different levels of drought stress including 0, -6 and -12 barat three replicates was carried out. According to the results, drought stress and kinetin individualy cause to decreases of germination percentage, germination rate, seedling length, seed vigor and seedling dry weight but uses of kinetin in drought stress condition improvment of them. Also, drought stress cause to increases of proline content and catalase activity. Therefore, seed priming with 10 ppm kinetin at drought stress was improved the germination indices of Silybum marianum L.DOI: http://dx.doi.org/10.3126/ijls.v9i1.11919 International Journal of Life Sciences Vol.9(1) 2015 6-11


2012 ◽  
Vol 4 (3) ◽  
pp. 110-117 ◽  
Author(s):  
Amir Hossein SAEIDNEJAD ◽  
Farzin POURAMIR ◽  
Mahdi NAGHIZADEH

Low temperature is an important abiotic stress which reduces crops growth and productivity and causes physiological damages to cellular structures. The aim of this study was to investigate the probability of spermine application to improve chilling tolerance of maize under stress conditions. The treatments were included seed priming with spermine (30, 60 and 90 mg/l solutions) and normal and stress condition. Seed emergence was improved by spermine priming on both conditions and mean emergence time (MET) was also decreased with priming. Shoot and root length was highly reduced under stress conditions, but the treated seeds were improved along with increased spermine concentration. Seedling dry weight was also affected by priming and reduced weight of stressful seedlings was alleviated by spermine priming. Decreased relative water content on seedlings under stress was elevated by the treatments and significantly increased. Electrolyte leakage was also recovered by applied treatments while it was adversely decreased on cold conditions. Antioxidative system was highly responded to spermine application. Superoxide dismutase (SOD) activity increased on both normal and stress conditions, but a little decrease was observed on seedlings treated with 90 ppm level and under chilling conditions. Catalase activity was also amplified by spermine treatments. Priming had a great effect on ascorbate peroxidase (APX) activity on both stressful and normal seedlings and increased it compare with non treated seedlings. It is also important to note that with increasing spermine concentration to 90 ppm, no considerable differences were observed. Thus, 60 ppm concentration could be proposed as the appropriate level of spermine in order to improve chilling tolerance of maize seedlings.


2012 ◽  
Vol 47 (8) ◽  
pp. 1181-1184 ◽  
Author(s):  
Badar‑uz‑Zaman ◽  
Arshad Ali ◽  
Syed Ishtiaq Hyder ◽  
Muhammad Arshadullah ◽  
Saqib Umar Bhatti

The objective of this work was to determine if KCl could be a useful nutrient primer for safe seed germination in maize crop under salt stress conditions. Seed priming was done using 50 mmol L‑1 of muriate of potash, and germination and seedling growth were evaluated after salt stress with NaCl up to 50 mmol L‑1. Another set of seeds was tested under the same salt stress conditions without priming. Under salinity stress, germination percentage, germination rate index, germination coefficient, and seedling vigor indexes were higher in primed seeds. In unprimed seeds, mean germination time increased, while the germination rate index and the fresh and dry matter mass decreased more sharply with salinity stress. The Na/K ratio was higher in unprimed seeds.


2021 ◽  
Vol 911 (1) ◽  
pp. 012086
Author(s):  
Ramlah Arief ◽  
Fauziah Koes ◽  
Oom Komalasari ◽  
Fatmawati

Abstract Seed priming or invigoration is presowing treatments of improving germination aimed to reduce the time from sowing to emergence and improving emergence uniformity. Research on seed priming was conducted Indonesian Cereal Research Institute (ICERI) seed laboratory from January until March 2021 to evaluate the effect of seed priming on sorghum seed vigor. Seed quality parameters includes germination percentages, germination rate, shoot and primary root length, seedling dryweight, Sorghum seed variety of Suri 4 were used as seed material. Results showed that among the priming treatments that give positive effect on germination percentage, germination rate, seedling dry weight were priming treatment with KNO3 1.5%.


2014 ◽  
Vol 6 (3) ◽  
pp. 374-380
Author(s):  
Yousef NASIRI ◽  
Parisa FEYZI ◽  
Abdollah JAVANMARD

Salinity is an abiotic stress which has harmful effects on germination of many plants. Therefore, high germination rate and vigorous early growth under salty soils is preferred. Seed priming is a way to increase salt tolerance of plants. An experiment was conducted to investigate the effect of seed priming on germination of milk thistle under salinity condition. The treatments were 4 levels of seed priming (no priming, distilled water as hydro priming and 0.5 and 1.0 mM salicylic acid) and 5 levels of salinity (0, 40 and 80 mM NaCl and 40 and 80 mM CaCl2). The experiment arranged as a factorial in a completely randomized design (CRD) with three replications. Results showed that salinity decreased germination percentage and germination rate to about 16 and 32% in 80 mM CaCl2 level compared to control, respectively. The highest mean germination time (5.7 day) were belonged to 80 mM CaCl2. Radicle and plumule length significantly decreased by 80 mM NaCl and 40 and 80 mM CaCl2. The lowest seedling weight and seed stamina observed in 80 mM CaCl2. 0.5 mM salicylic acid improved all traits except mean germination time as compared to control.  Salicylic acid (0.5 mM) improved radicle length under 0, 40 and 80 mM NaCl salinity levels as well as increased plumule length at the 0 and 40 mM NaCl salinity conditions.


Sign in / Sign up

Export Citation Format

Share Document