scholarly journals Enhanced copper-resistance gene repertoire in Alteromonas macleodii strains isolated from copper-treated marine coatings

PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257800
Author(s):  
Kathleen Cusick ◽  
Ane Iturbide ◽  
Pratima Gautam ◽  
Amelia Price ◽  
Shawn Polson ◽  
...  

Copper is prevalent in coastal ecosystems due to its use as an algaecide and as an anti-fouling agent on ship hulls. Alteromonas spp. have previously been shown to be some of the early colonizers of copper-based anti-fouling paint but little is known about the mechanisms they use to overcome this initial copper challenge. The main models of copper resistance include the Escherichia coli chromosome-based Cue and Cus systems; the plasmid-based E. coli Pco system; and the plasmid-based Pseudomonas syringae Cop system. These were all elucidated from strains isolated from copper-rich environments of agricultural and/or enteric origin. In this work, copper resistance assays demonstrated the ability of Alteromonas macleodii strains CUKW and KCC02 to grow at levels lethal to other marine bacterial species. A custom database of Hidden Markov Models was designed based on proteins from the Cue, Cus, and Cop/Pco systems and used to identify potential copper resistance genes in CUKW and KCC02. Comparative genomic analyses with marine bacterial species and bacterial species isolated from copper-rich environments demonstrated that CUKW and KCC02 possess genetic elements of all systems, oftentimes with multiple copies, distributed throughout the chromosome and mega-plasmids. In particular, two copies of copA (the key player in cytoplasmic detoxification), each with its own apparent MerR-like transcriptional regulator, occur on a mega-plasmid, along with multiple copies of Pco homologs. Genes from both systems were induced upon exposure to elevated copper levels (100 μM– 3 mM). Genomic analysis identified one of the merR-copA clusters occurs on a genomic island (GI) within the plasmid, and comparative genomic analysis found that either of the merR-copA clusters, which also includes genes coding for a cupredoxin domain-containing protein and an isoprenylcysteine methyltransferase, occurs on a GI across diverse bacterial species. These genomic findings combined with the ability of CUKW and KCC02 to grow in copper-challenged conditions are couched within the context of the genome flexibility of the Alteromonas genus.

mSystems ◽  
2017 ◽  
Vol 2 (3) ◽  
Author(s):  
Roshan Kumar ◽  
Helianthous Verma ◽  
Shazia Haider ◽  
Abhay Bajaj ◽  
Utkarsh Sood ◽  
...  

ABSTRACT This study highlights the significant role of the genetic repertoire of a microorganism in the similarity between Novosphingobium strains. The results suggest that the phylogenetic relationships were mostly influenced by metabolic trait enrichment, which is possibly governed by the microenvironment of each microbe’s respective niche. Using core genome analysis, the enrichment of a certain set of genes specific to a particular habitat was determined, which provided insights on the influence of habitat on the distribution of metabolic traits for Novosphingobium strains. We also identified habitat-specific protein hubs, which suggested delineation of Novosphingobium strains based on their habitat. Examining the available genomes of ecologically diverse bacterial species and analyzing the habitat-specific genes are useful for understanding the distribution and evolution of functional and phylogenetic diversity in the genus Novosphingobium. Species belonging to the genus Novosphingobium are found in many different habitats and have been identified as metabolically versatile. Through comparative genomic analysis, we identified habitat-specific genes and regulatory hubs that could determine habitat selection for Novosphingobium spp. Genomes from 27 Novosphingobium strains isolated from diverse habitats such as rhizosphere soil, plant surfaces, heavily contaminated soils, and marine and freshwater environments were analyzed. Genome size and coding potential were widely variable, differing significantly between habitats. Phylogenetic relationships between strains were less likely to describe functional genotype similarity than the habitat from which they were isolated. In this study, strains (19 out of 27) with a recorded habitat of isolation, and at least 3 representative strains per habitat, comprised four ecological groups—rhizosphere, contaminated soil, marine, and freshwater. Sulfur acquisition and metabolism were the only core genomic traits to differ significantly in proportion between these ecological groups; for example, alkane sulfonate (ssuABCD) assimilation was found exclusively in all of the rhizospheric isolates. When we examined osmolytic regulation in Novosphingobium spp. through ectoine biosynthesis, which was assumed to be marine habitat specific, we found that it was also present in isolates from contaminated soil, suggesting its relevance beyond the marine system. Novosphingobium strains were also found to harbor a wide variety of mono- and dioxygenases, responsible for the metabolism of several aromatic compounds, suggesting their potential to act as degraders of a variety of xenobiotic compounds. Protein-protein interaction analysis revealed β-barrel outer membrane proteins as habitat-specific hubs in each of the four habitats—freshwater (Saro_1868), marine water (PP1Y_AT17644), rhizosphere (PMI02_00367), and soil (V474_17210). These outer membrane proteins could play a key role in habitat demarcation and extend our understanding of the metabolic versatility of the Novosphingobium species. IMPORTANCE This study highlights the significant role of a microorganism’s genetic repertoire in structuring the similarity between Novosphingobium strains. The results suggest that the phylogenetic relationships were mostly influenced by metabolic trait enrichment, which is possibly governed by the microenvironment of each microbe’s respective niche. Using core genome analysis, the enrichment of a certain set of genes specific to a particular habitat was determined, which provided insights on the influence of habitat on the distribution of metabolic traits in Novosphingobium strains. We also identified habitat-specific protein hubs, which suggested delineation of Novosphingobium strains based on their habitat. Examining the available genomes of ecologically diverse bacterial species and analyzing the habitat-specific genes are useful for understanding the distribution and evolution of functional and phylogenetic diversity in the genus Novosphingobium.


2019 ◽  
Author(s):  
V. B. Reddy Lachagari ◽  
Ravi Gupta ◽  
Sivarama Prasad Lekkala ◽  
Lakshmi Mahadevan ◽  
Boney Kuriakose ◽  
...  

AbstractPurpleputtu (Oryza sativa ssp. indica cv. Purpleputtu) is a unique rice landrace from southern India that exhibits predominantly purple color. This study reports the underlying genetic complexity of the trait and associated domestication and de-domestication processes during its coevolution with present day cultivars. Along-with genome level allelic variations in the entire gene repertoire associated with purple, red coloration of grain and other plant parts. Comparative genomic analysis of the whole genome sequence of Purpleputtu (PP) revels total of 3,200,951 variants including 67,774 unique variations were observed in PP when compared with 108 rice genomes. Multiple sequence alignment uncovered a 14bp deletion in Rc (Red colored, a transcription factor of bHLH class) locus of PP, a key regulatory gene of anthocyanin biosynthetic pathway. Interestingly, this deletion in Rc gene is a characteristic feature of the present-day white pericarped rice cultivars. Phylogenetic analysis of Rc locus revealed a distinct clade showing proximity to the progenitor species rufipogon and nivara. In addition, PP genome exhibits a well conserved a 4.5Mbp region on chromosome 5 that harbors several loci associated with domestication of rice. Further, PP showed 1,387 unique SNPs compared to 3,024 lines of rice (SNP-Seek database). The results indicate that PP genome is rich in allelic diversity and can serve as an excellent resource for rice breeding for a variety of agronomically important traits such as disease resistance, enhanced nutritional values, stress tolerance and protection from harmful UV-B rays.


2020 ◽  
Vol 11 ◽  
Author(s):  
Sean A. Buono ◽  
Reagan J. Kelly ◽  
Nadav Topaz ◽  
Adam C. Retchless ◽  
Hideky Silva ◽  
...  

Effective laboratory-based surveillance and public health response to bacterial meningitis depends on timely characterization of bacterial meningitis pathogens. Traditionally, characterizing bacterial meningitis pathogens such as Neisseria meningitidis (Nm) and Haemophilus influenzae (Hi) required several biochemical and molecular tests. Whole genome sequencing (WGS) has enabled the development of pipelines capable of characterizing the given pathogen with equivalent results to many of the traditional tests. Here, we present the Bacterial Meningitis Genomic Analysis Platform (BMGAP): a secure, web-accessible informatics platform that facilitates automated analysis of WGS data in public health laboratories. BMGAP is a pipeline comprised of several components, including both widely used, open-source third-party software and customized analysis modules for the specific target pathogens. BMGAP performs de novo draft genome assembly and identifies the bacterial species by whole-genome comparisons against a curated reference collection of 17 focal species including Nm, Hi, and other closely related species. Genomes identified as Nm or Hi undergo multi-locus sequence typing (MLST) and capsule characterization. Further typing information is captured from Nm genomes, such as peptides for the vaccine antigens FHbp, NadA, and NhbA. Assembled genomes are retained in the BMGAP database, serving as a repository for genomic comparisons. BMGAP’s species identification and capsule characterization modules were validated using PCR and slide agglutination from 446 bacterial invasive isolates (273 Nm from nine different serogroups, 150 Hi from seven different serotypes, and 23 from nine other species) collected from 2017 to 2019 through surveillance programs. Among the validation isolates, BMGAP correctly identified the species for all 440 isolates (100% sensitivity and specificity) and accurately characterized all Nm serogroups (99% sensitivity and 98% specificity) and Hi serotypes (100% sensitivity and specificity). BMGAP provides an automated, multi-species analysis pipeline that can be extended to include additional analysis modules as needed. This provides easy-to-interpret and validated Nm and Hi genome analysis capacity to public health laboratories and collaborators. As the BMGAP database accumulates more genomic data, it grows as a valuable resource for rapid comparative genomic analyses during outbreak investigations.


2020 ◽  
Vol 202 (8) ◽  
Author(s):  
Minenosuke Matsutani ◽  
Nami Matsumoto ◽  
Hideki Hirakawa ◽  
Yuh Shiwa ◽  
Hirofumi Yoshikawa ◽  
...  

ABSTRACT Acetobacter pasteurianus is an industrial strain used for the vinegar production. Many A. pasteurianus strains with different phenotypic characteristics have been isolated so far. To understand the genetic background underpinning these phenotypes, a comparative genomic analysis of A. pasteurianus strains was conducted. Based on bioinformatics and experimental results, we report the following. (i) The gene repertoire related to the respiratory chains showed that several horizontal gene transfer events occurred after the divergence of these strains, indicating that the respiratory chain in A. pasteurianus has the diversity to adapt to its environment. (ii) There is a clear difference in thermotolerance even between 12 closely related strains. NBRC 3279, NBRC 3284, and NBRC 3283, in particular, which have only 55 mutations in total, showed differences in thermotolerance. The Na+/H+ antiporter gene nhaK2 was mutated in the thermosensitive NBRC 3279 and NBRC 3284 strains and not in the thermotolerant NBRC 3283 strain. The Na+/H+ antiporter activity of the three strains and expression of nhaK2 gene from NBRC 3283 in the two thermosensitive strains showed that these mutations are critical for thermotolerance. These results suggested that horizontal gene transfer events and several mutations have affected the phenotypes of these closely related strains. IMPORTANCE Acetobacter pasteurianus, an industrial vinegar-producing strain, exhibits diverse phenotypic differences such as respiratory activity related to acetic acid production, acetic acid resistance, or thermotolerance. In this study, we investigated the correlations between genome sequences and phenotypes among closely related A. pasteurianus strains. The gene repertoire related to the respiratory chains showed that the respiratory components of A. pasteurianus has a diversity caused by several horizontal gene transfers and mutations. In three closely related strains with clear differences in their thermotolerances, we found that the insertion or deletion that occurred in the Na+/H+ antiporter gene nhaK2 is directly related to their thermotolerance. Our study suggests that a relatively quick mutation has occurred in the closely related A. pasteurianus due to its genetic instability and that this has largely affected its phenotype.


2021 ◽  
Vol 9 (9) ◽  
pp. 1928
Author(s):  
Tawanda E. Maguvu ◽  
Cornelius C. Bezuidenhout

Comparative genomics, in particular, pan-genome analysis, provides an in-depth understanding of the genetic variability and dynamics of a bacterial species. Coupled with whole-genome-based taxonomic analysis, these approaches can help to provide comprehensive, detailed insights into a bacterial species. Here, we report whole-genome-based taxonomic classification and comparative genomic analysis of potential human pathogenic Enterobacter hormaechei subsp. hoffmannii isolated from chlorinated wastewater. Genome Blast Distance Phylogeny (GBDP), digital DNA-DNA hybridization (dDDH), and average nucleotide identity (ANI) confirmed the identity of the isolates. The algorithm PathogenFinder predicted the isolates to be human pathogens with a probability of greater than 0.78. The potential pathogenic nature of the isolates was supported by the presence of biosynthetic gene clusters (BGCs), aerobactin, and aryl polyenes (APEs), which are known to be associated with pathogenic/virulent strains. Moreover, analysis of the genome sequences of the isolates reflected the presence of an arsenal of virulence factors and antibiotic resistance genes that augment the predictions of the algorithm PathogenFinder. The study comprehensively elucidated the genomic features of pathogenic Enterobacter isolates from wastewaters, highlighting the role of wastewaters in the dissemination of pathogenic microbes, and the need for monitoring the effectiveness of the wastewater treatment process.


2018 ◽  
Author(s):  
Low Yi Yik ◽  
Grace Joy Wei Lie Chin ◽  
Collin Glen Joseph ◽  
Kenneth Francis Rodrigues

ABSTRACTBacillus thuringiensis is a type of Gram positive and rod shaped bacterium that is found in a wide range of habitats. Despite the intensive studies conducted on this bacterium, most of the information available are related to its pathogenic characteristics, with only a limited number of publications mentioning its ability to survive in extreme environments. Recently, a B. thuringiensis MCMY1 strain was successfully isolated from a copper contaminated site in Mamut Copper Mine, Sabah. This study aimed to conduct a comparative genomic analysis by using the genome sequence of MCMY1 strain published in GenBank (PRJNA374601) as a target genome for comparison with other available B. thuringiensis genomes at the GenBank. Whole genome alignment, Fragment all-against-all comparison analysis, phylogenetic reconstruction and specific copper genes comparison were applied to all forty-five B. thuringiensis genomes to reveal the molecular adaptation to copper tolerance. The comparative results indicated that B. thuringiensis MCMY1 strain is closely related to strain Bt407 and strain IS5056. This strain harbors almost all available copper genes annotated from the forty-five B. thuringiensis genomes, except for the gene for Magnesium and cobalt efflux protein (CorC) which plays an indirect role in reducing the oxidative stress that caused by copper and other metal ions. Furthermore, the findings also showed that the Copper resistance gene family, CopABCDZ and its repressor (CsoR) are conserved in almost all sequenced genomes but the presence of the genes for Cytoplasmic copper homeostasis protein (CutC) and CorC across the sample genomes are highly inconsonant. The variation of these genes across the B. thuringiensis genomes suggests that each strain may have adapted to their specific ecological niche. However, further investigations will be need to support this preliminary hypothesis.


BMC Genomics ◽  
2007 ◽  
Vol 8 (1) ◽  
pp. 397 ◽  
Author(s):  
José L Lavín ◽  
Kristoffer Kiil ◽  
Ohiana Resano ◽  
David W Ussery ◽  
José A Oguiza

2008 ◽  
Vol 1 ◽  
pp. MBI.S762 ◽  
Author(s):  
Yair Motro ◽  
David S. Dunn ◽  
Tom La ◽  
Nyree D. Phillips ◽  
David J. Hampson ◽  
...  

Anaerobic intestinal spirochaetes of the genus Brachyspira include both pathogenic and commensal species. The two best-studied members are the pathogenic species B. hyodysenteriae (the aetiological agent of swine dysentery) and B. pilosicoli (a cause of intestinal spirochaetosis in humans and other species). Analysis of near-complete genome sequences of these two species identified a highly conserved 26 kilobase (kb) region that was shared, against a background of otherwise very little sequence conservation between the two species. PCR amplification was used to identify sets of contiguous genes from this region in the related Brachyspira species B. intermedia, B. innocens, B. murdochii, B. alvinipulli, and B. aalborgi, and demonstrated the presence of at least part of this region in species from throughout the genus. Comparative genomic analysis with other sequenced bacterial species revealed that none of the completely sequenced spirochaete species from different genera contained this conserved cluster of coding sequences. In contrast, Enterococcus faecalis and Escherichia coli contained high gene cluster conservation across the 26 kb region, against an expected background of little sequence conservation between these phylogenetically distinct species. The conserved region in B. hyodysenteriae contained five genes predicted to be associated with amino acid transport and metabolism, four with energy production and conversion, two with nucleotide transport and metabolism, one with ion transport and metabolism, and four with poorly characterised or uncertain function, including an ankyrin repeat unit at the 5’ end. The most likely explanation for the presence of this 26 kb region in the Brachyspira species and in two unrelated enteric bacterial species is that the region has been involved in horizontal gene transfer.


Sign in / Sign up

Export Citation Format

Share Document