scholarly journals Development of ELISA based on Bacillus anthracis capsule biosynthesis protein CapA for naturally acquired antibodies against anthrax

PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258317
Author(s):  
Tuvshinzaya Zorigt ◽  
Yoshikazu Furuta ◽  
Manyando Simbotwe ◽  
Akihiro Ochi ◽  
Mai Tsujinouchi ◽  
...  

Anthrax is a zoonotic disease caused by the gram-positive spore-forming bacterium Bacillus anthracis. Detecting naturally acquired antibodies against anthrax sublethal exposure in animals is essential for anthrax surveillance and effective control measures. Serological assays based on protective antigen (PA) of B. anthracis are mainly used for anthrax surveillance and vaccine evaluation. Although the assay is reliable, it is challenging to distinguish the naturally acquired antibodies from vaccine-induced immunity in animals because PA is cross-reactive to both antibodies. Although additional data on the vaccination history of animals could bypass this problem, such data are not readily accessible in many cases. In this study, we established a new enzyme-linked immunosorbent assay (ELISA) specific to antibodies against capsule biosynthesis protein CapA antigen of B. anthracis, which is non-cross-reactive to vaccine-induced antibodies in horses. Using in silico analyses, we screened coding sequences encoded on pXO2 plasmid, which is absent in the veterinary vaccine strain Sterne 34F2 but present in virulent strains of B. anthracis. Among the 8 selected antigen candidates, capsule biosynthesis protein CapA (GBAA_RS28240) and peptide ABC transporter substrate-binding protein (GBAA_RS28340) were detected by antibodies in infected horse sera. Of these, CapA has not yet been identified as immunoreactive in other studies to the best of our knowledge. Considering the protein solubility and specificity of B. anthracis, we prepared the C-terminus region of CapA, named CapA322, and developed CapA322-ELISA based on a horse model. Comparative analysis of the CapA322-ELISA and PAD1-ELISA (ELISA uses domain one of the PA) showed that CapA322-ELISA could detect anti-CapA antibodies in sera from infected horses but was non-reactive to sera from vaccinated horses. The CapA322-ELISA could contribute to the anthrax surveillance in endemic areas, and two immunoreactive proteins identified in this study could be additives to the improvement of current or future vaccine development.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Cui Zhang ◽  
Cihan Oguz ◽  
Sue Huse ◽  
Lu Xia ◽  
Jian Wu ◽  
...  

Abstract Background Rodent malaria parasites are important models for studying host-malaria parasite interactions such as host immune response, mechanisms of parasite evasion of host killing, and vaccine development. One of the rodent malaria parasites is Plasmodium yoelii, and multiple P. yoelii strains or subspecies that cause different disease phenotypes have been widely employed in various studies. The genomes and transcriptomes of several P. yoelii strains have been analyzed and annotated, including the lethal strains of P. y. yoelii YM (or 17XL) and non-lethal strains of P. y. yoelii 17XNL/17X. Genomic DNA sequences and cDNA reads from another subspecies P. y. nigeriensis N67 have been reported for studies of genetic polymorphisms and parasite response to drugs, but its genome has not been assembled and annotated. Results We performed genome sequencing of the N67 parasite using the PacBio long-read sequencing technology, de novo assembled its genome and transcriptome, and predicted 5383 genes with high overall annotation quality. Comparison of the annotated genome of the N67 parasite with those of YM and 17X parasites revealed a set of genes with N67-specific orthology, expansion of gene families, particularly the homologs of the Plasmodium chabaudi erythrocyte membrane antigen, large numbers of SNPs and indels, and proteins predicted to interact with host immune responses based on their functional domains. Conclusions The genomes of N67 and 17X parasites are highly diverse, having approximately one polymorphic site per 50 base pairs of DNA. The annotated N67 genome and transcriptome provide searchable databases for fast retrieval of genes and proteins, which will greatly facilitate our efforts in studying the parasite biology and gene function and in developing effective control measures against malaria.



2016 ◽  
Vol 66 (6) ◽  
pp. 645 ◽  
Author(s):  
Anshul Varshney ◽  
Nidhi Puranik ◽  
M. Kumar ◽  
A.K. Goel

Anthrax, caused by Bacillus anthracis is known to occur globally since antiquity. Besides being an important biothreat agent, it is an important public health importance pathogen also in countries like India. B. anthracis secretes three distinct toxins, namely protective antigen (PA), lethal factor (LF) and edema factor (EF). PA is the central moiety of the anthrax toxin complex and therefore has been a molecule of choice for vaccine development. PA has four different domains with different functions. In this study, the major domains of PA were cloned and expressed in bacterial system. The purified recombinant proteins were used to determine the humoral immune response by ELISA using 43 human cutaneous anthrax serum samples. The maximum immunoreactivity was observed with the whole PA protein followed by domain 2, 4 and 1. The study corroborated that in addition to full PA, individual domain 2 and 4 can also be good target for vaccine development as well as for serodiagnostic assays for cutaneous anthrax



2008 ◽  
Vol 77 (2) ◽  
pp. 749-755 ◽  
Author(s):  
J. W. Ezzell ◽  
T. G. Abshire ◽  
R. Panchal ◽  
D. Chabot ◽  
S. Bavari ◽  
...  

ABSTRACT Bacillus anthracis lethal toxin (LT) was characterized in plasma from infected African Green monkeys, rabbits, and guinea pigs. In all cases, during the terminal phase of infection only the protease-activated 63-kDa form of protective antigen (PA63) and the residual 20-kDa fragment (PA20) were detected in the plasma. No uncut PA with a molecular mass of 83 kDa was detected in plasma from toxemic animals during the terminal stage of infection. PA63 was largely associated with lethal factor (LF), forming LT. Characterization of LT by Western blotting, capture enzyme-linked immunosorbent assay, and size exclusion chromatography revealed that the antiphagocytic poly-γ-d-glutamic acid (γ-DPGA) capsule released from B. anthracis bacilli was associated with LT in animal blood in variable amounts. While the nature of this in vivo association is not understood, we were able to determine that a portion of these LT/γ-DPGA complexes retained LF protease activity. Our findings suggest that the in vivo LT complexes differ from in vitro-produced LT and that including γ-DPGA when examining the effects of LT on specific immune cells in vitro may reveal novel and important roles for γ-DPGA in anthrax pathogenesis.



Vaccines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 59
Author(s):  
Kostlend Mara ◽  
Meiling Dai ◽  
Aaron M. Brice ◽  
Marina R. Alexander ◽  
Leon Tribolet ◽  
...  

The current pandemic has highlighted the ever-increasing risk of human to human spread of zoonotic pathogens. A number of medically-relevant zoonotic pathogens are negative-strand RNA viruses (NSVs). NSVs are derived from different virus families. Examples like Ebola are known for causing severe symptoms and high mortality rates. Some, like influenza, are known for their ease of person-to-person transmission and lack of pre-existing immunity, enabling rapid spread across many countries around the globe. Containment of outbreaks of NSVs can be difficult owing to their unpredictability and the absence of effective control measures, such as vaccines and antiviral therapeutics. In addition, there remains a lack of essential knowledge of the host–pathogen response that are induced by NSVs, particularly of the immune responses that provide protection. Vaccines are the most effective method for preventing infectious diseases. In fact, in the event of a pandemic, appropriate vaccine design and speed of vaccine supply is the most critical factor in protecting the population, as vaccination is the only sustainable defense. Vaccines need to be safe, efficient, and cost-effective, which is influenced by our understanding of the host–pathogen interface. Additionally, some of the major challenges of vaccines are the establishment of a long-lasting immunity offering cross protection to emerging strains. Although many NSVs are controlled through immunisations, for some, vaccine design has failed or efficacy has proven unreliable. The key behind designing a successful vaccine is understanding the host–pathogen interaction and the host immune response towards NSVs. In this paper, we review the recent research in vaccine design against NSVs and explore the immune responses induced by these viruses. The generation of a robust and integrated approach to development capability and vaccine manufacture can collaboratively support the management of outbreaking NSV disease health risks.



2007 ◽  
Vol 75 (6) ◽  
pp. 2841-2852 ◽  
Author(s):  
Theodor Chitlaru ◽  
Orit Gat ◽  
Haim Grosfeld ◽  
Itzhak Inbar ◽  
Yael Gozlan ◽  
...  

ABSTRACTIn a previous comparative proteomic study ofBacillus anthracisexamining the influence of the virulence plasmids and of various growth conditions on the composition of the bacterial secretome, we identified 64 abundantly expressed proteins (T. Chitlaru, O. Gat, Y. Gozlan, N. Ariel, and A. Shafferman, J. Bacteriol.188:3551-3571, 2006). Using a battery of sera fromB. anthracis-infected animals, in the present study we demonstrated that 49 of these proteins are immunogenic. Thirty-eightB. anthracisimmunogens are documented in this study for the first time. The relative immunogenicities of the 49 secreted proteins appear to span a >10,000-fold range. The proteins eliciting the highest humoral response in the course of infection include, in addition to the well-established immunogens protective antigen (PA), Sap, and EA1, GroEL (BA0267), AhpC (BA0345), MntA (BA3189), HtrA (BA3660), 2,3-cyclic nucleotide diesterase (BA4346), collagen adhesin (BAS5205), an alanine amidase (BA0898), and an endopeptidase (BA1952), as well as three proteins having unknown functions (BA0796, BA0799, and BA0307). Of these 14 highly potent secreted immunogens, 11 are known to be associated with virulence and pathogenicity inB. anthracisor in other bacterial pathogens. Combining the results reported here with the results of a similar study of the membranal proteome ofB. anthracis(T. Chitlaru, N. Ariel, A. Zvi, M. Lion, B. Velan, A. Shafferman, and E. Elhanany, Proteomics4:677-691, 2004) and the results obtained in a functional genomic search for immunogens (O. Gat, H. Grosfeld, N. Ariel, I. Inbar, G. Zaide, Y. Broder, A. Zvi, T. Chitlaru, Z. Altboum, D. Stein, S. Cohen, and A. Shafferman, Infect. Immun.74:3987-4001, 2006), we generated a list of 84 in vivo-expressed immunogens for future evaluation for vaccine development, diagnostics, and/or therapeutic intervention. In a preliminary study, the efficacies of eight immunogens following DNA immunization of guinea pigs were compared to the efficacy of a PA DNA vaccine. All eight immunogens induced specific high antibody titers comparable to the titers elicited by PA; however, unlike PA, none of them provided protection against a lethal challenge (50 50% lethal doses) of virulentB. anthracisstrain Vollum spores.



2021 ◽  
Author(s):  
Cui Zhang ◽  
Cihan Oguz ◽  
Sue Huse ◽  
Lu Xia ◽  
Jian Wu ◽  
...  

Abstract Background: Rodent malaria parasites are important models for studying host-malaria parasite interactions such as host immune response, mechanisms of parasite evasion of host killing, and vaccine development. One of the rodent malaria parasites is Plasmodium yoelii, and multiple P. yoelii strains or subspecies that cause different disease phenotypes have been widely employed in various studies. The genomes and transcriptomes of several P. yoelii strains have been analyzed and annotated, including the lethal strains of Plasmodium y. yoelii YM (or 17XL) and non-lethal strains of Plasmodium y. yoelii 17XNL/17X. Genomic DNA sequences and cDNA reads from another subspecies P. y. nigeriensis N67 have been reported for studies of genetic polymorphisms and parasite response to drugs, but its genome has not been assembled and annotated. Results: We performed genome sequencing of the N67 parasite using the PacBio long-read sequencing technology, de novo assembled its genome and transcriptome, and predicted 5,383 genes with high overall annotation quality. Comparison of the annotated genome of the N67 parasite with those of YM and 17X parasites revealed a set of genes with N67-specific orthology, expansion of gene families, particularly the homologs of the Plasmodium chabaudi erythrocyte membrane antigen, large numbers of SNPs and indels, and proteins predicted to interact with host immune responses based on their functional domains. Conclusions: The genomes of N67 and 17X parasites are highly diverse, having approximately one polymorphic site per 50 base pairs of DNA. The annotated N67 genome and transcriptome provide searchable databases for fast retrieval of genes and proteins, which will greatly facilitate our efforts in studying the parasite biology and gene function and in developing effective control measures against malaria.



Author(s):  
Anna Maria da Cruz Ferreira Evaristo ◽  
Anaiá da Paixão Sevá ◽  
Glauber Meneses Barboza de Oliveira ◽  
Ivo Wesley Gomes da Silva ◽  
Matheus Silva Ferreira ◽  
...  

Abstract This study aimed to determine the seroprevalence, factors associated with seropositivity to Leishmania infection in dogs and spatial analysis in six municipalities in the semiarid region of Pernambuco, Brazil. Blood samples were collected from 462 dogs, 77 in each municipality, and used for serological analysis [dual path platform (DPP®) and enzyme-linked immunosorbent assay (ELISA)]. Clinical signs of dogs were evaluated and associated factors for Leishmania infection were analyzed using robust Poisson regression model. A seroprevalence of 42.8% (198/462, IC: 95% = 38.6%-47.6%) was detected in dogs that tested positive in both tests, ranging from 29.8% to 55.8%, with higher prevalence in the municipality of Cabrobó (55.8%; P = 0.006). About 67% (132/198) of the seropositive dogs showed one or more clinical signs suggestive of canine leishmaniasis (CanL), such as lymphadenomegaly, skin lesions and conjunctivitis, which were associated with seropositivity. High seroprevalence levels were identified in urban and rural areas in all the municipalities, and the buffer for sand flies around cases covered almost these entire areas. Spatial analysis revealed a significant cluster, showing a relative risk of 1.88 in the urban area of Cabrobó. The higher density of seropositive dogs in urban areas indicates the need effective control measures against CanL to prevent the emergence of canine and human diseases.



2021 ◽  
Vol 8 (10) ◽  
pp. 236
Author(s):  
Abdelfattah Selim ◽  
Salma Shoulah ◽  
Abdelhamed Abdelhady ◽  
Abdulaziz Alouffi ◽  
Yasser Alraey ◽  
...  

Background: Canine leishmaniasis (CanL) is caused by Leishmania infantum (L. infantum) that is transmitted by sand fly vectors with dogs acting as the main reservoir. Methods: The present study aimed to determine the seroprevalence of CanL in dogs from Egypt and assessed the associated risk factors. The study was conducted from 2019 to 2020 in five governorates situated in Northern Egypt. Serum samples from 450 asymptomatic dogs were serologically examined by use of enzyme-linked immunosorbent assay (ELISA). Results: Overall, the seroprevalence rate of CanL was 21.3% and the highest rates were observed in Cairo and Giza governorates. The univariable analysis revealed that the seropositivity of CanL was strongly related to the dogs′ ages, length of hair, absence of veterinary care or application of insecticides, and the type of floor of their shelters. The risk factors that were found to be associated with CanL in exposed dogs were: age group 2–4 years old (OR = 12, 95% CI: 1.6–92.3); short hair (OR = 2.07, 95% CI: 1.2–3.6); absence of veterinary care (OR = 2.7, 95% CI: 1.3–5.8); no application of insecticides (OR = 3.09, 95% CI: 1.5–6.5) and their residence in a shelter with an earthen floor (OR = 1.42, 95% CI: 0.7–2.9). Conclusions: Based on the present results, CanL is present in Egyptian dogs and this increases the possibility of transmission by sand fly to humans with whom they have contact. Consequently, an efficient monitoring programme and effective control measures are important to reduce the risk of infection.



Author(s):  
E. Ryabchevskaya ◽  
E. Evtushenko ◽  
N. Nikitin ◽  
O. Kondakova ◽  
P. Ivanov ◽  
...  

A stable genetically modified recombinant anthrax antigen containing 3rd and 4th Bacillus anthracis protective antigen domains has been obtained. Complexes of this antigen with structurally modified plant virus particles are a perspective basis for a new generation anthrax vaccine development.



2009 ◽  
Vol 46 (10) ◽  
pp. 2107-2115 ◽  
Author(s):  
Manpreet Kaur ◽  
Hema Chug ◽  
Harpreet Singh ◽  
Subhash Chandra ◽  
Manish Mishra ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document