scholarly journals Neutrophil extracellular traps modulate inflammatory markers and uptake of oxidized LDL by human and murine macrophages

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259894
Author(s):  
Andreas Conforti ◽  
Thorsten Wahlers ◽  
Adnana Paunel-Görgülü

Neutrophil extracellular traps (NETs) are web-like structures, which are released upon neutrophil activation. It has previously been demonstrated that NETs are present in atherosclerotic lesions of both humans and animal models thus playing a decisive role in atherosclerosis. Besides, macrophages have a crucial role in disease progression, whereby classically activated M1 macrophages sustain inflammation and alternatively activated M2 macrophages display anti-inflammatory effects. Although NETs and macrophages were found to colocalize in atherosclerotic lesions, the impact of NETs on macrophage function is not fully understood. In the present study, we aimed to investigate the effect of NETs on human and murine macrophages in respect to the expression of pro-inflammatory cytokines, matrix metalloproteinases (MMPs) and uptake of oxidized LDL (oxLDL) in vitro. Human THP-1 and murine bone marrow-derived macrophages were cultured under M1 (LPS + IFN-γ)- and M2a (IL-4)-polarizing culture conditions and treated with NETs. To mimic intraplaque regions, cells were additionally cultured under hypoxic conditions. NETs significantly increased the expression of IL-1β, TNF-α and IL-6 in THP-M1 macrophages under normoxia but suppressed their expression in murine M1 macrophages under hypoxic conditions. Notably, NETs increased the number of oxLDL-positive M1 and M2 human and murine macrophages under normoxia, but did not influence formation of murine foam cells under hypoxia. However, oxLDL uptake did not strongly correlate with the expression of the LDL receptor CD36. Besides, upregulated MMP-9 expression and secretion by macrophages was detected in the presence of NETs. Again, hypoxic culture conditions dampened NETs effects. These results suggest that NETs may favor foam cell formation and plaque vulnerability, but exert opposite effects in respect to the inflammatory response of human and murine M1 macrophages. Moreover, effects of NETs on macrophages’ phenotype are altered under hypoxia.

Rheumatology ◽  
2021 ◽  
Author(s):  
Sicília Rezende Oliveira ◽  
José Alcides A de Arruda ◽  
Ayda Henriques Schneider ◽  
Valessa Florindo Carvalho ◽  
Caio Machado ◽  
...  

Abstract Objectives Neutrophil extracellular traps (NETs) play a role in the pathogenesis of periodontitis and rheumatoid arthritis (RA). However, it remains poorly understood whether NETs participate in the cross-talk between periodontitis and RA. Herein, we investigated the production of NETs in individuals with periodontitis and RA and its association with clinical parameters. The impact of periodontal therapy on RA and NET release was also assessed. Methods The concentration of NETs and cytokines was determined in the saliva and plasma of individuals with early RA (n = 24), established RA (n = 64), and individuals without RA (n = 76). The influence of periodontitis on the production of NETs and cytokines was also evaluated. Results Individuals with early RA had a higher concentration of NETs in saliva and plasma than individuals with established RA or without RA. Periodontitis resulted in an increase in the concentration of NETs of groups of individuals without RA and with early RA. The proportion of individuals with high concentrations of IL-6, IL-10 and GM-CSF was higher among individuals with periodontitis than among individuals without periodontitis. The concentrations of TNF-α, IL-6, IL-17/IL-25, and IL-28A were particularly high in individuals with early RA. Worse periodontal clinical parameters, RA onset and RA activity were significantly associated with circulating NETs. Periodontal therapy was associated with a reduction in the concentration of NETs and inflammatory cytokines and amelioration in periodontitis and RA. Conclusion This study reveals that NETs are a possible link between periodontitis and RA, with periodontal therapy resulting in a dramatic switch in circulating NET levels.


2018 ◽  
Vol 51 (4) ◽  
pp. 1701389 ◽  
Author(s):  
Fahim Ebrahimi ◽  
Stavros Giaglis ◽  
Sinuhe Hahn ◽  
Claudine A. Blum ◽  
Christine Baumgartner ◽  
...  

Neutrophil extracellular traps (NETs) are a hallmark of the immune response in inflammatory diseases. However, the role of NETs in community-acquired pneumonia (CAP) is unknown. This study aims to characterise the impact of NETs on clinical outcomes in pneumonia.This is a secondary analysis of a randomised controlled, multicentre trial. Patients with CAP were randomly assigned to either 50 mg prednisone or placebo for 7 days. The primary end-point was time to clinical stability; main secondary end-points were length of hospital stay and mortality.In total, 310 patients were included in the analysis. Levels of cell-free nucleosomes as surrogate markers of NETosis were significantly increased at admission and declined over 7 days. NETs were significantly associated with reduced hazards of clinical stability and hospital discharge in multivariate adjusted analyses. Moreover, NETs were associated with a 3.8-fold increased adjusted odds ratio of 30-day mortality. Prednisone treatment modified circulatory NET levels and was associated with beneficial outcome.CAP is accompanied by pronounced NET formation. Patients with elevated serum NET markers were at higher risk for clinical instability, prolonged length of hospital stay and 30-day all-cause mortality. NETs represent a novel marker for outcome and a possible target for adjunct treatments of pneumonia.


FEBS Open Bio ◽  
2017 ◽  
Vol 7 (6) ◽  
pp. 877-886 ◽  
Author(s):  
Go Kamoshida ◽  
Takane Kikuchi-Ueda ◽  
Satoshi Nishida ◽  
Shigeru Tansho-Nagakawa ◽  
Hirotoshi Kikuchi ◽  
...  

2011 ◽  
Vol 106 (11) ◽  
pp. 763-771 ◽  
Author(s):  
Ine Wolfs ◽  
Marjo Donners ◽  
Menno de Winther

SummaryThe phenotype of macrophages in atherosclerotic lesions can vary dramatically, from a large lipid laden foam cell to a small inflammatory cell. Classically, the concept of macrophage heterogeneity discriminates between two extremes called either pro-inflammatory M1 macrophages or anti-inflammatory M2 macrophages. Polarisation of plaque macrophages is predominantly determined by the local micro-environment present in the atherosclerotic lesion and is rather more complex than typically described by the M1/M2 paradigm. In this review we will discuss the role of various polarising factors in regulating the phenotypical state of plaque macrophages. We will focus on two main levels of phenotype regulation, one determined by differentiation factors produced in the lesion and the other determined by T-cell-derived polarising cytokines. With foam cell formation being a key characteristic of macrophages during atherosclerosis initiation and progression, these polarisation factors will also be linked to lipid handling of macrophages.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1127
Author(s):  
Cheng-Hsun Lu ◽  
Ko-Jen Li ◽  
Cheng-Han Wu ◽  
Chieh-Yu Shen ◽  
Yu-Min Kuo ◽  
...  

Polymorphonuclear neutrophils (PMNs) are the most abundant white blood cell in the circulation capable of neutrophil extracellular traps (NETs) formation after stimulation. Both NADPH oxidase-dependent and -independent pathways are involved in NET formation. The IgG is the most abundant immunoglobulin in human serum. However, the impact of the circulating IgG on NET formation is totally unexplored. In this study, the all-trans retinoic acid (ATRA)-induced mature granulocytes (dHL-60) were pre-treated with monomeric human IgG, papain-digested Fab fragment, crystallizable IgG Fc portion, rituximab (a human IgG1), or IgG2. The NET formation of the dHL-60 in the presence/absence of phorbol 12-myristate 13-acetate (PMA) stimulation was then measured by the fluorescent area after SYTOX green nucleic acid stain. The intracellular reactive oxygen species (ROS) generation was measured by flow cytometry. Total and phosphorylated Syk, SHP-1, and ERK were detected by immunoblot. We found that human monomeric IgG and its subclasses IgG1 and IgG2 per se induced negligible NET formation of dHL-60, but the FcγRIII engagement by these IgG subclasses and Fc portion augment PMA-stimulated dHL-60 NET formation in a dose-dependent manner. Furthermore, we found that increased Syk and ERK phosphorylation, intracellular ROS generation, and pro-inflammatory cytokines, IL-8 and TNF-α, production could be induced after FcγRIII engagement. Blocking FcγRIII engagement by a specific antibody diminished the augmented NET formation. In conclusion, we discovered that cross-talk between FcγRIII engagement-induced Syk-ERK and PMA-induced PKC signaling pathways augment NET formation of dHL-60 via increased ROS generation and pro-inflammatory cytokines, IL-8 and TNF-α, production.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Huan Tao ◽  
Patricia G Yancey ◽  
John L Blakemore ◽  
Youmin Zhang ◽  
Lei Ding ◽  
...  

Background: Autophagy modulates vascular cell lipid metabolism, lipid droplet turnover, foam cell formation, cell survival and death, and inflammation. Scavenger receptor class B type I (SR-BI) deficiency causes impaired lysosome function in macrophages and erythrocytes. Methods and Results: Bone marrow transplantation studies were performed in ApoE and LDLR deficient mice to examine the effects of hematopoietic SR-BI deletion on atherosclerotic lesion autophagy. In addition, in vitro studies compared WT versus SR-BI -/- macrophages. Under conditions of cholesterol induced stress, the mRNA and protein levels of critical autophagy players including ATG5, ATG6/Belcin-1, ATG7 and LC3II were decreased by 37.8% to 84.6% (P<0.05 to 0.01) in SR-B1 -/- macrophages and atherosclerotic aortic tissue compared to controls. Electron microscopic analysis showed that SR-BI -/- versus WT macrophages had 80% fewer (P<0.05) autophagsomes in response to cholesterol enrichment. Macrophage SR-BI deficiency led to 1.8-fold (P<0.05) more lipid deposition and 2.5-fold more (P<0.01) apoptosis in response to oxidized LDL. Furthermore, hematopoietic SR-BI deletion caused 2.3 fold (P<0.05) more cell death in aortic atherosclerotic lesions compared to the WT control. Pharmacologic activation of autophagy did not reduce the levels of lipid droplets or cell apoptosis in SR-BI null macrophages vs WT control. WT peritoneal macrophages were used to examine SR-BI subcellular distribution and its interaction with VPS34/Beclin-1. In response to induction of autophagy, macrophage SR-BI was expressed in lysosomes and co-localized with LC3-II. Furthermore, we found that SR-BI directly interacted with the VPS34/Beclin-1 complex. Conclusions: SR-BI deficiency leads to defective autophagy and accelerates macrophage foam cell formation and apoptosis in experimental mouse atherosclerotic lesions. Macrophage SR-BI regulates expression of critical autophagy players and directly modulates autophagy via the VPS34/Beclin-1 pathway, identifying novel targets for the treatment of atherosclerosis.


Author(s):  
Joanna Orysiak ◽  
Jitendra K. Tripathi ◽  
Klaudia K. Brodaczewska ◽  
Atul Sharma ◽  
Konrad Witek ◽  
...  

2020 ◽  
Vol 40 (9) ◽  
pp. 2279-2292 ◽  
Author(s):  
Stefanie Ascher ◽  
Eivor Wilms ◽  
Giulia Pontarollo ◽  
Henning Formes ◽  
Franziska Bayer ◽  
...  

Objective: Recruitment of neutrophils and formation of neutrophil extracellular traps (NETs) contribute to lethality in acute mesenteric infarction. To study the impact of the gut microbiota in acute mesenteric infarction, we used gnotobiotic mouse models to investigate whether gut commensals prime the reactivity of neutrophils towards formation of neutrophil extracellular traps (NETosis). Approach and Results: We applied a mesenteric ischemia-reperfusion (I/R) injury model to germ-free (GF) and colonized C57BL/6J mice. By intravital imaging, we quantified leukocyte adherence and NET formation in I/R-injured mesenteric venules. Colonization with gut microbiota or monocolonization with Escherichia coli augmented the adhesion of leukocytes, which was dependent on the TLR4 (Toll-like receptor-4)/TRIF (TIR-domain–containing adapter-inducing interferon-β) pathway. Although neutrophil accumulation was decreased in I/R-injured venules of GF mice, NETosis following I/R injury was significantly enhanced compared with conventionally raised mice or mice colonized with the minimal microbial consortium altered Schaedler flora. Also ex vivo, neutrophils from GF and antibiotic-treated mice showed increased LPS (lipopolysaccharide)-induced NETosis. Enhanced TLR4 signaling in GF neutrophils was due to elevated TLR4 expression and augmented IRF3 (interferon regulatory factor-3) phosphorylation. Likewise, neutrophils from antibiotic-treated conventionally raised mice had increased NET formation before and after ischemia. Increased NETosis in I/R injury was abolished in conventionally raised mice deficient in the TLR adaptor TRIF. In support of the desensitizing influence of enteric LPS, treatment of GF mice with LPS via drinking water diminished LPS-induced NETosis in vitro and in the mesenteric I/R injury model. Conclusions: Collectively, our results identified that the gut microbiota suppresses NETing neutrophil hyperreactivity in mesenteric I/R injury, while ensuring immunovigilance by enhancing neutrophil recruitment.


Sign in / Sign up

Export Citation Format

Share Document