scholarly journals Temporal and spatial isotopic variability of marine prey species in south-eastern Australia: Potential implications for predator diet studies

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259961
Author(s):  
Marlenne A. Rodríguez-Malagón ◽  
Cassie N. Speakman ◽  
Grace J. Sutton ◽  
Lauren P. Angel ◽  
John P. Y. Arnould

Stable isotope analyses, particularly of carbon (δ13C) and nitrogen (δ15N), are used to investigate ecological relationships among species. For marine predators, research has shown the main factors influencing their intra-specific and intra-individual isotopic variation are geographical movements and changes in the composition of diet over time. However, as the differences seen may be the result of changes in the prey items consumed, a change in feeding location or the combination of both, knowledge of the temporal and spatial consistency in the isotopic values of prey becomes crucial for making accurate inferences about predator diets. This study used an abundant marine predator, the Australasian gannet (Morus serrator), as prey sampler to investigate the annual variation in fish and squid prey isotope values over a four-year period (2012–2015) and the geographic variation between two sites with contrasting oceanographic conditions. Significant inter-annual variation was observed in δ13C and/or δ15N values of five of the eight prey species analysed. The strongest inter-annual variation in both δ13C and δ15N values occurred in 2015, which coincided with a strong El Niño-Southern Oscillation (ENSO). This may suggest a temporal fluctuation in the geographic source of prey or the origin of their nutrients. These results suggest that it is important to consider the potential significant differences in isotopic values within the prey assemblages that predators consume. This is important to improve the interpretation of marine predator isotope results when determining the influence of environmental variability on their diets.

2021 ◽  
Vol 8 (10) ◽  
Author(s):  
Cassie N. Speakman ◽  
Andrew J. Hoskins ◽  
Mark A. Hindell ◽  
Daniel P. Costa ◽  
Jason R. Hartog ◽  
...  

The highly dynamic nature of the marine environment can have a substantial influence on the foraging behaviour and spatial distribution of marine predators, particularly in pelagic marine systems. However, knowledge of the susceptibility of benthic marine predators to environmental variability is limited. This study investigated the influence of local-scale environmental conditions and large-scale climate indices on the spatial distribution and habitat use in the benthic foraging Australian fur seal ( Arctocephalus pusillus doriferus ; AUFS). Female AUFS provisioning pups were instrumented with GPS or ARGOS platform terminal transmitter tags during the austral winters of 2001–2019 at Kanowna Island, south-eastern Australia. Individuals were most susceptible to changes in the Southern Oscillation Index that measures the strength of the El Niño Southern Oscillation, with larger foraging ranges, greater distances travelled and more dispersed movement associated with 1-yr lagged La Niña-like conditions. Additionally, the total distance travelled was negatively correlated with the current year sea surface temperature and 1-yr lagged Indian Ocean Dipole, and positively correlated with 1-yr lagged chlorophyll- a concentration. These results suggest that environmental variation may influence the spatial distribution and availability of prey, even within benthic marine systems.


2020 ◽  
Vol 635 ◽  
pp. 187-202
Author(s):  
T Brough ◽  
W Rayment ◽  
E Slooten ◽  
S Dawson

Many species of marine predators display defined hotspots in their distribution, although the reasons why this happens are not well understood in some species. Understanding whether hotspots are used for certain behaviours provides insights into the importance of these areas for the predators’ ecology and population viability. In this study, we investigated the spatiotemporal distribution of foraging behaviour in Hector’s dolphin Cephalorhynchus hectori, a small, endangered species from New Zealand. Passive acoustic monitoring of foraging ‘buzzes’ was carried out at 4 hotspots and 6 lower-use, ‘reference areas’, chosen randomly based on a previous density analysis of visual sightings. The distribution of buzzes was modelled among spatial locations and on 3 temporal scales (season, time of day, tidal state) with generalised additive mixed models using 82000 h of monitoring data. Foraging rates were significantly influenced by all 3 temporal effects, with substantial variation in the importance and nature of each effect among locations. The complexity of the temporal effects on foraging is likely due to the patchy nature of prey distributions and shows how foraging is highly variable at fine scales. Foraging rates were highest at the hotspots, suggesting that feeding opportunities shape fine-scale distribution in Hector’s dolphin. Foraging can be disrupted by anthropogenic influences. Thus, information from this study can be used to manage threats to this vital behaviour in the locations and at the times where it is most prevalent.


2014 ◽  
Vol 71 (7) ◽  
pp. 1717-1727 ◽  
Author(s):  
A. Jason Phillips ◽  
Lorenzo Ciannelli ◽  
Richard D. Brodeur ◽  
William G. Pearcy ◽  
John Childers

Abstract This study investigated the spatial distribution of juvenile North Pacific albacore (Thunnus alalunga) in relation to local environmental variability [i.e. sea surface temperature (SST)], and two large-scale indices of climate variability, [the Pacific Decadal Oscillation (PDO) and the Multivariate El Niño/Southern Oscillation Index (MEI)]. Changes in local and climate variables were correlated with 48 years of albacore troll catch per unit effort (CPUE) in 1° latitude/longitude cells, using threshold Generalized Additive Mixed Models (tGAMMs). Model terms were included to account for non-stationary and spatially variable effects of the intervening covariates on albacore CPUE. Results indicate that SST had a positive and spatially variable effect on albacore CPUE, with increasingly positive effects to the North, while PDO had an overall negative effect. Although albacore CPUE increased with SST both before and after a threshold year of 1986, such effect geographically shifted north after 1986. This is the first study to demonstrate the non-stationary spatial dynamics of albacore tuna, linked with a major shift of the North Pacific. Results imply that if ocean temperatures continue to increase, US west coast fisher communities reliant on commercial albacore fisheries are likely to be negatively affected in the southern areas but positively affected in the northern areas, where current albacore landings are highest.


2012 ◽  
Vol 141 (9) ◽  
pp. 1867-1875 ◽  
Author(s):  
H. XIAO ◽  
L. D. GAO ◽  
X. J. LI ◽  
X. L. LIN ◽  
X. Y. DAI ◽  
...  

SUMMARYThe transmission of haemorrhagic fever with renal syndrome (HFRS) is influenced by climatic, reservoir and environmental variables. The epidemiology of the disease was studied over a 6-year period in Changsha. Variables relating to climate, environment, rodent host distribution and disease occurrence were collected monthly and analysed using a time-series adjusted Poisson regression model. It was found that the density of the rodent host and multivariate El Niño Southern Oscillation index had the greatest effect on the transmission of HFRS with lags of 2–6 months. However, a number of climatic and environmental factors played important roles in affecting the density and transmission potential of the rodent host population. It was concluded that the measurement of a number of these variables could be used in disease surveillance to give useful advance warning of potential disease epidemics.


2014 ◽  
Vol 11 (5) ◽  
pp. 7685-7719 ◽  
Author(s):  
M. Broich ◽  
A. Huete ◽  
M. G. Tulbure ◽  
X. Ma ◽  
Q. Xin ◽  
...  

Abstract. Land surface phenological cycles of vegetation greening and browning are influenced by variability in climatic forcing. Quantitative information on phenological cycles and their variability is important for agricultural applications, wildfire fuel accumulation, land management, land surface modeling, and climate change studies. Most phenology studies have focused on temperature-driven Northern Hemisphere systems, where phenology shows annually reoccurring patterns. Yet, precipitation-driven non-annual phenology of arid and semi-arid systems (i.e. drylands) received much less attention, despite the fact that they cover more than 30% of the global land surface. Here we focused on Australia, the driest inhabited continent with one of the most variable rainfall climates in the world and vast areas of dryland systems. Detailed and internally consistent studies investigating phenological cycles and their response to climate variability across the entire continent designed specifically for Australian dryland conditions are missing. To fill this knowledge gap and to advance phenological research, we used existing methods more effectively to study geographic and climate-driven variability in phenology over Australia. We linked derived phenological metrics with rainfall and the Southern Oscillation Index (SOI). We based our analysis on Enhanced Vegetation Index (EVI) data from the MODerate Resolution Imaging Spectroradiometer (MODIS) from 2000 to 2013, which included extreme drought and wet years. We conducted a continent-wide investigation of the link between phenology and climate variability and a more detailed investigation over the Murray–Darling Basin (MDB), the primary agricultural area and largest river catchment of Australia. Results showed high inter- and intra-annual variability in phenological cycles. Phenological cycle peaks occurred not only during the austral summer but at any time of the year, and their timing varied by more than a month in the interior of the continent. The phenological cycle peak magnitude and integrated greenness were most significantly correlated with monthly SOI within the preceding 12 months. Correlation patterns occurred primarily over north-eastern Australia and within the MDB predominantly over natural land cover and particularly in floodplain and wetland areas. Integrated greenness of the phenological cycles (surrogate of productivity) showed positive anomalies of more than two standard deviations over most of eastern Australia in 2009–2010, which coincided with the transition between the El Niño induced decadal droughts to flooding caused by La Niña. The quantified spatial-temporal variability in phenology across Australia in response to climate variability presented here provides important information for land management and climate change studies and applications.


2020 ◽  
Vol 11 (1) ◽  
pp. 251-266 ◽  
Author(s):  
Paolo De Luca ◽  
Gabriele Messori ◽  
Robert L. Wilby ◽  
Maurizio Mazzoleni ◽  
Giuliano Di Baldassarre

Abstract. Multi-hazard events can be associated with larger socio-economic impacts than single-hazard events. Understanding the spatio-temporal interactions that characterize the former is therefore of relevance to disaster risk reduction measures. Here, we consider two high-impact hazards, namely wet and dry hydrological extremes, and quantify their global co-occurrence. We define these using the monthly self-calibrated Palmer Drought Severity Index based on the Penman–Monteith model (sc_PDSI_pm), covering the period 1950–2014, at 2.5∘ horizontal resolution. We find that the land areas affected by extreme wet, dry, and wet–dry events (i.e. geographically remote yet temporally co-occurring wet or dry extremes) are all increasing with time, the trends of which in dry and wet–dry episodes are significant (p value ≪ 0.01). The most geographically widespread wet–dry event was associated with the strong La Niña in 2010. This caused wet–dry anomalies across a land area of 21 million km2 with documented high-impact flooding and drought episodes spanning diverse regions. To further elucidate the interplay of wet and dry extremes at a grid cell scale, we introduce two new metrics: the wet–dry (WD) ratio and the extreme transition (ET) time intervals. The WD ratio measures the relative occurrence of wet or dry extremes, whereas ET quantifies the average separation time of hydrological extremes with opposite signs. The WD ratio shows that the incidence of wet extremes dominates over dry extremes in the USA, northern and southern South America, northern Europe, north Africa, western China, and most of Australia. Conversely, dry extremes are more prominent in most of the remaining regions. The median ET for wet to dry is ∼27 months, while the dry-to-wet median ET is 21 months. We also evaluate correlations between wet–dry hydrological extremes and leading modes of climate variability, namely the El Niño–Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and Atlantic Multi-decadal Oscillation (AMO). We find that ENSO and PDO have a similar influence globally, with the former significantly impacting (p value < 0.05) a larger area (18.1 % of total sc_PDSI_pm area) compared to the latter (12.0 %), whereas the AMO shows an almost inverse pattern and significantly impacts the largest area overall (18.9 %). ENSO and PDO show the most significant correlations over northern South America, the central and western USA, the Middle East, eastern Russia, and eastern Australia. On the other hand, the AMO shows significant associations over Mexico, Brazil, central Africa, the Arabian Peninsula, China, and eastern Russia. Our analysis brings new insights on hydrological multi-hazards that are of relevance to governments and organizations with globally distributed interests. Specifically, the multi-hazard maps may be used to evaluate worst-case disaster scenarios considering the potential co-occurrence of wet and dry hydrological extremes.


1993 ◽  
Vol 44 (6) ◽  
pp. 1337 ◽  
Author(s):  
JS Russell ◽  
IM McLeod ◽  
MB Dale ◽  
TR Valentine

A detailed study has been carried out in four regions in the subtropics of Eastern Australia to determine the relationship between the Southern Oscillation Index (SOI) and subsequent seasonal rainfall. The period studied was from 1915 to 1991 for 3-monthly periods of spring (SON), summer (DJF), autumn (MAM) and winter (JJA). The 3-monthly prior SOI values were plotted against seasonal rainfall of the four regions and four seasons. These data were widely scattered but with a linear trend showing increased seasonal rainfall as the SOI increased. Linear trends were plotted for each season and region. Comparisons were made between the use of the ACE algorithm, which transforms the SOI and rainfall data, and the use of linear trends. Polynomials were used to calculate equations for each region and season, but only spring and summer produced satisfactory ACE functions. Estimates were made of spring and summer rainfall relative to prior SOI values for each region. While the SOI as a predictor of rainfall broadly estimates spring and summer rainfall, this variable has limited usefulness on its own. One of the options available with the ACE program is that additional independent variables can be added as required. Current research suggests that sea surface temperature data from specific ocean areas surrounding the Australian continent is the most useful additional variable at present. However the complexity of such an analysis is greatly increased.


1994 ◽  
Vol 31 (3) ◽  
pp. 311-325 ◽  
Author(s):  
BERNARD CELLOT ◽  
MARIE JOSE DOLE-OLIVIER ◽  
GUDRUN BORNETTE ◽  
GUY PAUTOU

1994 ◽  
Vol 45 (7) ◽  
pp. 1557 ◽  
Author(s):  
I Kuhnel

This study examines the relationship between the Southern Oscillation Index and the sugarcane yield anomalies at 27 mills in north-eastern Australia (Queensland) for the period 1950-1989. The major results of this work indicate that the SO1 alone seems to have only a limited value as predictor of total sugarcane yields over large areas (i.e. the whole of Queensland). However, on a smaller scale, the SO1 appears to be a useful indicator of yields for the northern sugarcane districts. In these northern areas, the highest correlations with the SO1 are reached during the southern hemisphere spring and summer months 6 to 11 months prior to the harvest. They are negative and explain about 40% of the total variance. They also suggest that a positive SO1 during the spring and summer months tends to be followed by lower-than-normal yields at the following harvest and vice versa. This signal is rather robust and withstands rigorous significance testing. Moreover, it appears that the relationship between the SO1 and the sugarcane yields has been relatively strong and stable for the past 40 years, but weakened substantially during the 1930-1940 period.


1991 ◽  
Vol 42 (3) ◽  
pp. 263 ◽  
Author(s):  
WW Hsieh ◽  
BV Hamon

Using four decades of hydrographic data collected off the coast near Sydney, New South Wales, and sea-level data at Sydney, we studied the interannual variability in south-eastern Australian shelf waters. The first two empirical orthogonal function (EOF) modes of the band-pass-filtered 50-m-depth hydrographic data (temperature, T; salinity, S; nitrate, N; inorganic phosphate, P; and oxygen, O) and the sea level (SL) and adjusted sea level (ASL) data accounted respectively for 51 and 27% of the total variance. Both modes were significantly correlated with the Southern Oscillation Index (SOI). The first mode, with T, S, O and ASL varying in opposition to N and P, represented the internal or baroclinic response, associated with vertical displacements of the isopycnals. The second mode, with large in-phase fluctuations in SL and ASL but small changes in the hydrographic variables, represented mainly the external or barotropic response during the El Niiio-Southern Oscillation (ENSO). Three-year composites centred around seven ENSO warm episodes revealed that T, S, O and ASL were generally low and N, P, SL and SO1 were high in the year before each ENSO warm episode, but the former group rose while the latter group dropped in the year of the warm episode. The changes in the hydrographic variables at 50 m depth were consistent with relatively shallow isopycnals in the year before the ENSO warm episode, followed by a deepening of the isopycnals during the warm episode. Estimates of this downward displacement of isopycnals, as determined from T, N, P and O, were in the range 7-10 m. The geostrophic wind arising from the pressure fluctuations during ENSO is proposed as a probable cause for the vertical displacement of the isopycnals. In the year before the warm episode, the low air pressure over Australia would produce a clockwise geostrophic wind around south-eastern Australia, generating offshore Ekman transport and coastal upwelling. During the warm episode, air pressure over Australia rises, the geostrophic wind reverses, and downward movement of the isopycnals would occur off south-eastern Australia.


Sign in / Sign up

Export Citation Format

Share Document