scholarly journals Effect of incremental proportions of Desmanthus spp. in isonitrogenous forage diets on growth performance, rumen fermentation and plasma metabolites of pen-fed growing Brahman, Charbray and Droughtmaster crossbred beef steers

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0260918
Author(s):  
Felista W. Mwangi ◽  
Benedicte Suybeng ◽  
Christopher P. Gardiner ◽  
Robert T. Kinobe ◽  
Edward Charmley ◽  
...  

Desmanthus (Desmanthus spp.), a tropically adapted pasture legume, is highly productive and has the potential to reduce methane emissions in beef cattle. However, liveweight gain response to desmanthus supplementation has been inconclusive in ruminants. This study aimed to evaluate weight gain, rumen fermentation and plasma metabolites of Australian tropical beef cattle in response to supplementation with incremental levels of desmanthus forage legume in isonitrogenous diets. Forty-eight Brahman, Charbray and Droughtmaster crossbred beef steers were pen-housed and fed a basal diet of Rhodes grass (Chloris gayana) hay supplemented with 0, 15, 30 or 45% freshly chopped desmanthus forage on dry matter basis, for 140 days. Varying levels of lucerne (Medicago sativa) hay were added in the 0, 15 and 30% diets to ensure that all diets were isonitrogenous with the 45% desmanthus diet. Data were analyzed using the Mixed Model procedures of SAS software. Results showed that the proportion of desmanthus in the diet had no significant effect on steer liveweight, rumen volatile fatty acids molar proportions and plasma metabolites (P ≥ 0.067). Total bilirubin ranged between 3.0 and 3.6 μmol/L for all the diet treatments (P = 0.67). All plasma metabolites measured were within the expected normal range reported for beef cattle. Rumen ammonia nitrogen content was above the 10 mg/dl threshold required to maintain effective rumen microbial activity and maximize voluntary feed intake in cattle fed low-quality tropical forages. The average daily weight gains averaged 0.5 to 0.6 kg/day (P = 0.13) and were within the range required to meet the target slaughter weight for prime beef markets within 2.5 years of age. These results indicate that desmanthus alone or mixed with other high-quality legume forages can be used to supplement grass-based diets to improve tropical beef cattle production in northern Australia with no adverse effect on cattle health.

Animals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2097
Author(s):  
Bénédicte Suybeng ◽  
Edward Charmley ◽  
Christopher P. Gardiner ◽  
Bunmi S. Malau-Aduli ◽  
Aduli E.O. Malau-Aduli

The main objective of this study was to investigate the effect of supplementing beef cattle with incremental levels of Desmanthus leptophyllus cv. JCU1 and Desmanthus bicornutus cv. JCU4 on in vivo methane (CH4) emissions and the role of tannins in rumen fermentation. Fourteen yearling Droughtmaster steers were allocated to each of the two Desmanthus species and offered a basal diet of Rhodes grass (Chloris gayana) hay plus fresh Desmanthus at 0%, 15%, 22%, and 31% of dry matter intake (DMI). The 15% and 31% Desmanthus periods lasted 21 days and the 22 and 0% Desmanthus periods, 14 days. Methane production was measured by open-circuit gas exchange in the last two days of each period. The results showed a linear increase in DMI and reduction in CH4 yield with the increasing level of Desmanthus and subsequently condensed tannins in the diet. The added tannin binder polyethylene glycol-4000 did not affect CH4 yield but increased rumen NH3-N and iso-acid concentrations. Therefore, on a low-quality diet, Desmanthus has the potential to increase intake and reduce CH4 emissions. Even though its tannins can bind rumen proteins, the beef cattle anti-methanogenic response to supplementation with Desmanthus may be a combination of rumen fermentation and tannin effects.


2021 ◽  
pp. 1158-1164
Author(s):  
Anuthida Seankamsorn ◽  
Anusorn Cherdthong ◽  
Sarong So ◽  
Metha Wanapat

Background and Aim: Crude glycerin is changed to propionate in the rumen, while chitosan can be used as a feed supplement to increase propionic acid concentration and decrease methane (CH4) production. We hypothesized that supplementation with a combination of a high level of crude glycerin with chitosan could have a beneficial effect on ruminal fermentation and mitigate CH4 production. This study aimed to explore the combined effects of crude glycerin and chitosan supplementation on nutrient digestibility, rumen fermentation, and CH4 calculation in native Thai bulls. Materials and Methods: Four 2-year-old native Thai bulls, weighing 150±20 kg, were kept in a 2×2 factorial arrangement in a 4×4 Latin square design. Factor A represented the incorporation of crude glycerin at 10.5% and 21% of the dry matter (DM) of a total mixed ration (TMR), and factor B represented the supplementation of chitosan at 1% and 2% DM of a TMR. Results: Increasing levels of crude glycerin at 21% decreased DM intake by 0.62 kg/day compared with 10.5% crude glycerin (p<0.05), whereas nutrient digestibility did not change (p>0.05). The incorporated crude glycerin and supplemented chitosan levels did not affect the pH, temperature, concentrations of ammonia-nitrogen, microbial population, and blood urea nitrogen (p>0.05). Supplemented chitosan and incorporated crude glycerin did not show any interaction effects on the molar portions and total volatile fatty acids (VFAs), except estimated CH4. Increasing the incorporated crude glycerin levels increased propionate and decreased the ratio of acetate to propionate ratio, whereas levels of butyrate, acetate, and total VFAs were unchanged. The combination of crude glycerin at 21% in the TMR with chitosan at 2% reduced CH4 estimation by 5.08% compared with the other feed treatment. Conclusion: Increasing incorporated crude glycerin levels in a TMR significantly elevated the propionate concentration, whereas combining 21% crude glycerin in the TMR diet with 2% chitosan supplementation could depress CH4 estimation more effectively than adding one of these supplements alone.


2011 ◽  
Vol 79 (1) ◽  
pp. 16-25 ◽  
Author(s):  
Qendrim Zebeli ◽  
Sarah J Terrill ◽  
Alberto Mazzolari ◽  
Suzanna M Dunn ◽  
Wen Z Yang ◽  
...  

This study evaluated the effects of intraruminal administration ofMegasphaera elsdeniion ruminal fermentation patterns, the profile of plasma metabolites, and milk yield and composition of mid-lactation dairy cows. Eight primiparous, ruminally cannulated Holstein cows were arranged in a paired 2×2 crossover design. Cows were randomly assigned to one of two treatments: 1) intraruminal inoculation of 35 ml suspension per day ofM. elsdeniiATCC 25940 (MEGA), containing 108cfu/ml of bacteria, dissolved in 35 ml of saline (0·15m), or 2) carrier alone (35 ml saline; CTR). Both postprandial and preprandial rumen volatile fatty acids (VFA) and plasma metabolite measurements were analysed. Postprandial VFA patterns were affected the most, with butyrate (P<0·01) and valerate (P<0·01) proportions increasing, and acetate (P<0·01), isobutyrate (P=0·05) and isovalerate (P<0·01) decreasing in MEGA cows. Preprandial data measured at various days showed that MEGA dosage tended to increase the molar proportion of propionate (P=0·09) and lower the acetate to propionate ratio (P=0·07) in the rumen fluid. There was no effect of treatment on rumen pH and on the concentration of lactate in the rumen as well as on selected preprandial plasma metabolites. Postprandial plasma concentrations of cholesterol tended to increase (P=0·07) in MEGA cows compared with CTR. Concentrations of non-esterified fatty acids (NEFA) in the plasma were lower in MEGA cows after the morning feeding (P<0·01). Sampling hour also affected plasma NEFA in this study. Plasma β-hydroxybutyrate (BHBA) were not affected by the treatment (P>0·05); however, after the morning feeding BHBA concentration was increased in both groups of cows. Dry matter intake and milk yield and composition were not affected by treatment. In conclusion, results indicate thatM. elsdeniihas the potential to modulate the rumen fermentation profile in mid-lactation Holstein cows, but these effects were only slightly reflected in changes in plasma metabolites and milk composition.


2014 ◽  
Vol 54 (10) ◽  
pp. 1871 ◽  
Author(s):  
Arturo Samuel Gomez Insuasti ◽  
Yury Tatiana Granja Salcedo ◽  
Pablo de Souza Castagnino ◽  
Bruno Ramalho Vieira ◽  
Euclides Braga Malheiros ◽  
...  

The effects of glycerol with fat sources as a feed alternative were investigated in the ration for Nellore steers (Bos indicus). Eight cannulated steers at 30 months of age with initial bodyweight of 554 ± 36.0 kg were used in a double 4 by 4 Latin square design with four consecutive 16-day periods. Treatments were three different diets with lipid sources (soybean, soybean oil and calcium salts of fatty acids) and one diet control without lipid sources. All diets formulated contained 10% crude glycerol and 5% ether extract with a forage:concentrate ratio of 35:65; corn silage was used as forage. The ruminal liquid was sampled for 24 h and ruminal fermentations were monitored by measuring pH, concentrations of ammonia nitrogenand volatile fatty acids in rumen fluid. Urine samples were obtained from the total collection for 24 h for estimation of rumen microbial protein supply using urinary purine derivatives. Our results showed that the use of lipid sources combined with glycerol did not induce significant changes in rumen pH, acetate molar proportion, ruminal microbial protein or dry matter intake. Although the acetate molar proportion was kept constant within normal parameters, the propionate molar proportion was increased by the diet containing lipid sources. Moreover, we found that there was a negative effect of lipid sources on crude protein and neutral detergent fibre corrected for ash and protein intake, and one positive effect on ether extract intake. We believe that association between fat and glycerol may affect rumen fermentation parameters through reducing fibre intake and increasing propionate production and ammonia nitrogen.


Author(s):  
C.L. Thorp ◽  
R.W.J. Steen ◽  
A.R.G. Wylie ◽  
J.D. McEvoy ◽  
C. Shaw

Studies have shown that reducing energy intake by restricting dry matter intake (DMI) at a constant forage: concentrate (F:C) ratio is more effective at increasing carcass lean and reducing carcass fat content than is reducing energy intake by increasing the F:C ratio (1). Research at this Institute has also shown that, per megajoule of digestible energy (DE), diets restricted in this manner are 45 % more efficient at producing carcass lean.The mechanism by which these methods of restriction result in these differences in carcass composition has previously been assumed to be that of rumen fermentation. More recently however, the significance of rumen fermentation in controlling the carcass composition of beef cattle has been questioned (2,3).The aim of this experiment was to examine the effect of decreasing the F:C ratio, at constant DE and DMI, on both rumen and endocrinological parameters, in particular the hormones insulin and insulin like growth factor-1 (IGF-1), in finishing beef steers.


2021 ◽  
Author(s):  
Sonny Ramos ◽  
Seon Ho Kim ◽  
Chang Dae Jeong ◽  
Lovelia L. Mamuad ◽  
A-rang Son ◽  
...  

Abstract Background: Rumen bacterial community is mainly affected by the type of diet consumed by the host animals. High concentrate diet increases the abundance of lactic acid producers and utilizers due to high level of non-structural carbohydrates thus reducing the number of fiber-degrading bacteria because of drastic decrease in pH. Dietary buffers are essential in regulating rumen pH through the compounds responsible in resisting drastic decrease in pH once cattle were fed with high-concentrate diet. However, no study has evaluated the effects of buffering capacity and efficiency in alleviating chronic acidosis in rumen. Ruminal metataxonomic and fermentation characteristics analyses were conducted to evaluate the effect of different buffering capacities on in vitro and in vivo experiments in high-concentrate fed Hanwoo steers. Results: Results revealed that BC0.9% and BC0.5% had similar and significant effect (P < 0.05) on in vitro ruminal fermentation at 3 to 24 h incubation. Both BC0.9% and BC0.5% had significantly highest (P < 0.05) buffering capacity, pH, and ammonia-nitrogen (NH3-N) than BC0.3% and CON at 24 h of incubation. Individual and total volatile fatty acids (VFA) were significantly lowest in CON. Increasing buffering capacity concentration showed linear effect on pH at 6 to 24 h while total gas and NH3-N at 3 and 12 h. Phylum Bacteroidetes dominated all treatments but a higher abundance of Firmicutes in BC0.5% than others. Ruminoccocus bromii and Succiniclasticum ruminis were dominant in BC0.5% and Bacteroides massiliensis in BC0.3%. The normalized data of relative abundance of observed OTUs’ representative families have grouped the CON with BC0.3% in the same cluster, whereas BC0.5% and BC0.9% were clustered separately which indicates the effect of varying buffering capacity of buffer agents. Principal coordinate analysis (PCoA) on unweighted UniFrac distances revealed close similarity of bacterial community structures within and between treatments and control, in which BC0.9% and BC0.3% groups showed dispersed community distribution. Conclusion: Our findings showed that increasing buffering capacity enhances rumen fermentation parameters and affects rumen microbiome by altering bacterial community through distinct structure between high and low buffering capacity, thus an important factor contributed to the prevention of ruminal acidosis during a high-concentrate diet.


Author(s):  
A. Belete-Adinew ◽  
P.C. Garnsworthy

Much interest has been shown recently in synchronising the supply of nitrogen and energy yielding substrates to microorganisms in the rumen. It is argued that when supplies are synchronised, rumen fermentation will be more efficient and improved performance will result. Previous trials with beef cattle at Nottingham and elsewhere have investigated the effect of single protein sources (e.g. fishmeal, soya bean meal) on rumen fermentation and performance. However, the majority of silage-fed beef cattle in this country receive supplementary protein in compound feeds. It is possible that the digestion of the carbohydrate portion of the compound feed could compete with silage digestion for nitrogen supply. Therefore, degradation of silage should be investigated in animals actually fed on the compound feeds, rather than just considering the degradation of the protein components in a compound. A trial was carried out to investigate the influence of protein source in compound feeds on rumen fermentation and performance in beef steers given silage.


2020 ◽  
Vol 8 (8) ◽  
pp. 1160 ◽  
Author(s):  
Jiangkun Yu ◽  
Liyuan Cai ◽  
Jiacai Zhang ◽  
Ao Yang ◽  
Yanan Wang ◽  
...  

This study was performed to explore the predominant responses of rumen microbiota with thymol supplementation as well as effective dose of thymol on rumen fermentation. Thymol at different concentrations, i.e., 0, 100 mg/L, 200 mg/L, and 400 mg/L (four groups × five replications) was applied for 24 h of fermentation in a rumen fluid incubation system. Illumina MiSeq sequencing was applied to investigate the ruminal microbes in addition to the examination of rumen fermentation. Thymol doses reached 200 mg/L and significantly decreased (p < 0.05) total gas production (TGP) and methane production; the production of total volatile fatty acids (VFA), propionate, and ammonia nitrogen, and the digestibility of dry matter and organic matter were apparently decreased (p < 0.05) when the thymol dose reached 400 mg/L. A thymol dose of 200 mg/L significantly affected (p < 0.05) the relative abundance of 14 genera of bacteria, three species of archaea, and two genera of protozoa. Network analysis showed that bacteria, archaea, and protozoa significantly correlated with methane production and VFA production. This study indicates an optimal dose of thymol at 200 mg/L to facilitate rumen fermentation, the critical roles of bacteria in rumen fermentation, and their interactions with the archaea and protozoa.


1992 ◽  
Vol 119 (3) ◽  
pp. 411-418 ◽  
Author(s):  
S. Jaakkola ◽  
P. Huhtanen

SUMMARYFour Friesian bulls with ruminal and duodenal cannulae were used in a 4 × 4 Latin square experiment to study the effects of lactic acid (LA) on rumen fermentation and microbial protein synthesis. On a dry matter (DM) basis (g/kg), the basal diet comprised grass silage (700), barley (240) and rapeseed meal (60) and it was given at the rate of 7·1 kg DM/day. LA was infused continuously into the rumen at the rates of 0 (L0), 40 (L40), 80 (L80) or 120 (L120) g/kg basal diet DM.The molar proportion of propionate in the rumen volatile fatty acids (VFA) increased linearly (P < 0.001) and that of acetate, isovalerate, caproate (P < 0.01) and isobutyrate (P < 005) decreased linearly with an increasing rate of LA infusion. At the same time there was a linear decrease (P < 0.05) in the number of rumen protozoa. When the metabolic fate of infused LA was calculated on a molar basis, 0.21 of lactic acid was converted to acetate, 0·52 to propionate and 0.27 to butyrate.Infusion of LA into the rumen had no effect on the site or extent of the digestion of basal diet organic matter (OM) and neutral detergent fibre (NDF). LA diets tended to have a lower microbial N flow at the duodenum (71·4 v. 85·8 g N/day) and lower synthetic efficiency in the rumen (14·4 v. 20.4 g N/kg OM apparently fermented) when compared with the control diet. The ratio of duodenal non-ammonia N to N intake was highest with the control diet and lowest with L40, the effect of the LA rate being quadratic (P < 0·05). The results suggest that propionate was the main end-product of lactic acid fermentation in the rumen with the grass silage based diet. Lactic acid had no value as an energy source for microbial protein synthesis.


2021 ◽  
Vol 51 (2) ◽  
pp. 271-279
Author(s):  
M.R. Kekana ◽  
D. Luseba ◽  
M.C. Muyu

Garlic contains secondary metabolites with antimicrobial properties that can alter nutrient digestibility and rumen fermentation, similar to other antimicrobial products. The objectives of the study were to evaluate the effects of garlic powder and garlic juice on in vitro nutrient digestibility, rumen fermentation, and gas production. The treatments consisted of control with no additives, garlic powder, and garlic juice at 0.5 ml and 1 ml. The digestibility of dry matter, crude protein and neutral detergent fibre were determined after 48 hours incubation. Rumen ammonia nitrogen and volatile fatty acids were determined at 12 hours and 24 hours incubation. The cumulative gas production was recorded periodically over 48 hours. The in vitro dry matter disappearance decreased with 1 ml of garlic juice compared with control. The crude protein degradability in garlic powder and garlic juice was lower than in control. Volatile fatty acids increased in all treatments. Individual volatile fatty acids were significantly different, especially propionate, whereas the acetate to propionate ratio was reduced by garlic juice, and ammonia nitrogen was reduced by garlic powder and 0.5 ml of garlic juice. The cumulative gas production increased significantly with both levels of garlic juice. The addition of garlic juice at 0.5 mL/100 ml could enhance the production of propionate, and reduce the acetate to propionate ratio, implying that the supply of hydrogen for methanogens was limited.


Sign in / Sign up

Export Citation Format

Share Document