scholarly journals Frequency matters: How successive feeding episodes by blood-feeding insect vectors influences disease transmission

2021 ◽  
Vol 17 (6) ◽  
pp. e1009590
Author(s):  
Doug E. Brackney ◽  
Jacquelyn C. LaReau ◽  
Ryan C. Smith
2020 ◽  
Vol 8 (1) ◽  
pp. 7
Author(s):  
RODIAH BALFAS ◽  
SUPRIADI SUPRIADI ◽  
T. L. MARDININGSIH ◽  
ENDANG SUGANDI

The cause of stunting disease of black pepper (Piper nigrum) in Indonesia has not yet been confirmed cither due o a virus or mycoplaam. However, similar disease found on black pepper plants in the Southeast Asia is caused by Piper yellow mottle virus (PYMV) which is transmitted by Planococcus citri. This expeiments was aimed o examine the cause of the stunting disease and its insect vectors. The expeiment were conducted from October 1998 to May 2001. Diseased vegetative materials of black pepper plants showing stunting disease were collected from Sukamulya, Sukabumi. The potential insect vectors were collected from black pepper plants in Bogor, IP Sukamulya (Sukabumi), Lampung and Bangka. The insects were fed on the diseased plants obtained from Lampung, Bogor and IP Sukamulya, then transferred o the healthy plants. The healthy plants were produced rom true seeds and cutings oiginated rom Bogor and IP Sukamulya. The tested plants were incubated at the green house and examined for disease development. Diseased leaf samples collected rom black pepper plant rom IP. Sukamulya and the transmitted plants were sent to the University of Minnesota, USA for Ihe virus (PYMV) by using ISEM (immunosorbent electron microscope). The result snowed that the leaves samples rom IP. Sukamulya were infected by PYMV. The morphology and size of the virus were similar to those caused stunting disease in the South East Asia. Potential insects vectors found on the diseased black <br /><br />pepper plants were two mealybugs, P. minor and Ferrisia virgata (Hemiptera; Coccoidca: PaaidbcoccidaeX aa well as an aphid Toxoptera aurantii (Hemiptera: Aphidoidea: Aphididae). The first tial on disease transmission by using P. minor, previously reared on the potato tubers, showed one out of ten tested plants produced disease sympom. The subsequent trial using P minor, bred on healthy black pepper seedlings, showed thee out often tested plants developed disease symptoms. None of the aphid transmitted plants developed Ihe disease. This study confirmed thai PYMV b the cause of stunting disease on black pepper in IP Sukamulya and Lampung and P. minor as the insect vecor of the disease.<br /><br />


2005 ◽  
Vol 77 (4) ◽  
pp. 665-693 ◽  
Author(s):  
Bruno B. Andrade ◽  
Clarissa R. Teixeira ◽  
Aldina Barral ◽  
Manoel Barral-Netto

The saliva from blood-feeding arthropod vectors is enriched with molecules that display diverse functions that mediate a successful blood meal. They function not only as weapons against host's haemostatic, inflammatory and immune responses but also as important tools to pathogen establishment. Parasites, virus and bacteria taking advantage of vectors' armament have adapted to facilitate their entry in the host. Today, many salivary molecules have been identified and characterized as new targets to the development of future vaccines. Here we focus on current information on vector's saliva and the molecules responsible to modify host's hemostasis and immune response, also regarding their role in disease transmission.


2017 ◽  
Vol 115 (5) ◽  
pp. 1009-1014 ◽  
Author(s):  
William E. Bradshaw ◽  
Joshua Burkhart ◽  
John K. Colbourne ◽  
Rudyard Borowczak ◽  
Jacqueline Lopez ◽  
...  

The spread of blood-borne pathogens by mosquitoes relies on their taking a blood meal; if there is no bite, there is no disease transmission. Although many species of mosquitoes never take a blood meal, identifying genes that distinguish blood feeding from obligate nonbiting is hampered by the fact that these different lifestyles occur in separate, genetically incompatible species. There is, however, one unique extant species with populations that share a common genetic background but blood feed in one region and are obligate nonbiters in the rest of their range: Wyeomyia smithii. Contemporary blood-feeding and obligate nonbiting populations represent end points of divergence between fully interfertile southern and northern populations. This divergence has undoubtedly resulted in genetic changes that are unrelated to blood feeding, and the challenge is to winnow out the unrelated genetic factors to identify those related specifically to the evolutionary transition from blood feeding to obligate nonbiting. Herein, we determine differential gene expression resulting from directional selection on blood feeding within a polymorphic population to isolate genetic differences between blood feeding and obligate nonbiting. We show that the evolution of nonbiting has resulted in a greatly reduced metabolic investment compared with biting populations, a greater reliance on opportunistic metabolic pathways, and greater reliance on visual rather than olfactory sensory input. W. smithii provides a unique starting point to determine if there are universal nonbiting genes in mosquitoes that could be manipulated as a means to control vector-borne disease.


2018 ◽  
Author(s):  
James Orsborne ◽  
Luis Furuya-Kanamori ◽  
Claire L. Jeffries ◽  
Mojca Kristan ◽  
Abdul Rahim Mohammed ◽  
...  

AbstractDifficulties with observing the dispersal of insect vectors in the field have hampered understanding of several aspects of their behaviour linked to disease transmission. Here, a novel method based on detection of blood-meal sources is introduced to inform two critical and understudied mosquito behaviours: plasticity in the malaria vector’s blood-host choice and vector dispersal. Strategically located collections of Anopheles coluzzii from a malaria-endemic village of southern Ghana showed statistically significant variation in host species composition of mosquito blood-meals. Trialling a new sampling approach gave the first estimates for the remarkably local spatial scale across which host choice is plastic. Using quantitative PCR, the blood-meal digestion was then quantified for field-caught mosquitoes and calibrated according to timed blood digestion in colony mosquitoes. We demonstrate how this new ‘molecular Sella score’ approach can be used to estimate the dispersal rate of blood-feeding vectors caught in the field.


2016 ◽  
Vol 27 (2) ◽  
pp. 168-174
Author(s):  
M Mala ◽  
M Imam ◽  
K Hassan

The parasite, Plasmodium needs an insect vector (mosquito) and a vertebrate host (human) to successful malaria transmission. The parasite use the vertebrate hosts for their asexual reproduction and insect host for sexual multiplication. In order to know the mechanism of disease transmission, knowledge about the possible interactions causes by the three components, vector, parasite and host is important. The mosquito feeding behaviour greatly contributes in the rate of malaria transmission. To assist the rate of transmission of malaria, the parasite, Plasmodium completes a complex developmental stage in the mosquito. In the mosquito the parasite, passes complex developmental stages and ensuing changes into three important forms of their life cycle: ookinete, oocyst and sporozoites. This review study concludes that, the interactions among vector, parasite and host in terms of reproductive behaviour and blood-feeding behaviour helps in transmitting malaria to the vertebrate hosts mainly, human being.Progressive Agriculture 27 (2): 168-174, 2016


Author(s):  
Narissara Jariyapan ◽  
Wej Choochote ◽  
Atchariya Jitpakdi ◽  
Thasaneeya Harnnoi ◽  
Padet Siriyasatein ◽  
...  

Salivary gland proteins of the human malaria vector, Anopheles dirus B were determined and analyzed. The amount of salivary gland proteins in mosquitoes aged between 3 - 10 days was approximately 1.08 ± 0.04 µg/female and 0.1 ± 0.05 µg/male. The salivary glands of both sexes displayed the same morphological organization as that of other anopheline mosquitoes. In females, apyrase accumulated in the distal regions, whereas alpha-glucosidase was found in the proximal region of the lateral lobes. This differential distribution of the analyzed enzymes reflects specialization of different regions for sugar and blood feeding. SDS-PAGE analysis revealed that at least seven major proteins were found in the female salivary glands, of which each morphological region contained different major proteins. Similar electrophoretic protein profiles were detected comparing unfed and blood-fed mosquitoes, suggesting that there is no specific protein induced by blood. Two-dimensional polyacrylamide gel analysis showed the most abundant salivary gland protein, with a molecular mass of approximately 35 kilodaltons and an isoelectric point of approximately 4.0. These results provide basic information that would lead to further study on the role of salivary proteins of An. dirus B in disease transmission and hematophagy.


2018 ◽  
Author(s):  
Laura B. Duvall ◽  
Lavoisier Ramos-Espiritu ◽  
Kyrollos E. Barsoum ◽  
J. Fraser Glickman ◽  
Leslie B. Vosshall

AbstractFemale Aedes aegypti mosquitoes bite humans to obtain a blood-meal to develop their eggs. Remarkably, strong attraction to humans is suppressed for several days after the blood-meal by an unknown mechanism. We investigated a role for neuropeptide Y (NPY)-related signaling in this long-term behavioral suppression, and discovered that drugs targeting human NPY receptors modulate mosquito host-seeking behavior. In a screen of all 49 predicted Ae. aegypti peptide receptors, we identified NPY-like receptor 7 (NPYLR7) as the sole target of these human drugs. To obtain small molecule agonists selective for NPYLR7, we carried out a high-throughput cell-based assay of 265,211 compounds, and isolated 6 highly selective NPYLR7 agonists that inhibit mosquito attraction to humans. NPYLR7 CRISPR-Cas9 null mutants are defective in behavioral suppression, and resistant to these drugs. Finally, we show that these drugs are capable of inhibiting biting and blood-feeding on a live host, suggesting a novel approach to control infectious disease transmission by controlling mosquito behavior.


2017 ◽  
Author(s):  
Benjamin J Krajacich ◽  
Diana L Huestis ◽  
Adama Dao ◽  
Alpha S Yaro ◽  
Moussa Diallo ◽  
...  

The poorly understood mechanisms of the seasonal maintenance of Anopheles spp. mosquitoes through the dry season in Africa remain a critical gap in our knowledge of Plasmodium disease transmission. While it is thought that adult mosquitoes remain in a dormant state throughout this seven-month dry season, the nature of this state remains unknown and has largely not been recapitulated in laboratory settings. To elucidate possible life history traits allowing for this phenotype, the spatiotemporal change in the microbiome of mosquitoes in the dry and wet seasons in Mali was analyzed by sequencing the 16S ribosome bacterial region in whole bodies of adult mosquitoes collected from two locations with varying water availability. These locations were a village near the Niger River with year-round water sources (N’Gabakoro, “Riparian”), and an area closer to the Sahara with highly seasonal breeding sites (Thierola Area, “Sahelian”). The 16S bacterial data consisted of 2057 unique sequence variants in 426 genera across 184 families. With these, we found several compositional differences that were seasonally and spatially linked. Counter to our initial hypothesis, there was a more pronounced seasonal difference in the bacterial microbiome in the Riparian than Sahelian area. These major seasonal shifts were in Ralstonia, Sphingorhabdus, and Duganella spp. bacteria that are usually soil and water-associated, indicating that these changes may be from bacteria acquired in the larval environment, rather than during adulthood. In the Sahelian dry season mosquitoes, there was a unique intracellular bacteria, Anaplasma, which likely was acquired through non-human blood feeding. Coupled with this finding, cytochrome B analysis showed a greater heterogeneity in host choice of An. coluzzii independent of season in the Thierola area compared to N’Gabakoro (77.5% vs. 94.6% human-origin blood meal, respectively), which may indicate a relaxation of anthropophily in some locations. This study highlights the diversity present in the bacterial composition of individual mosquitoes, characterizes the spatial and seasonal differences in this composition, and indicates some possible qualitative biomarkers in areas of intense seasonal change.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fabiola Claudio-Piedras ◽  
Benito Recio-Tótoro ◽  
Jorge Cime-Castillo ◽  
Renaud Condé ◽  
Massimo Maffei ◽  
...  

AbstractThe cuticular hydrocarbon (CHC) profile reflects the insects’ physiological states. These include age, sex, reproductive stage, and gravidity. Environmental factors such as diet, relative humidity or exposure to insecticides also affect the CHC composition in mosquitoes. In this work, the CHC profile was analyzed in two Anopheles albimanus phenotypes with different degrees of susceptibility to Plasmodium, the susceptible-White and resistant-Brown phenotypes, in response to the two dietary regimes of mosquitoes: a carbon-rich diet (sugar) and a protein-rich diet (blood) alone or containing Plasmodium ookinetes. The CHCs were analyzed by gas chromatography coupled to mass spectrometry or flame ionization detection, identifying 19 CHCs with chain lengths ranging from 20 to 37 carbons. Qualitative and quantitative changes in CHCs composition were dependent on diet, a parasite challenge, and, to a lesser extent, the phenotype. Blood-feeding caused up to a 40% reduction in the total CHC content compared to sugar-feeding. If blood contained ookinetes, further changes in the CHC profile were observed depending on the Plasmodium susceptibility of the phenotypes. Higher infection prevalence caused greater changes in the CHC profile. These dietary and infection-associated modifications in the CHCs could have multiple effects on mosquito fitness, impacts on disease transmission, and tolerance to insecticides.


Sign in / Sign up

Export Citation Format

Share Document