Phosphatase Targets in TOR Signaling

2007 ◽  
pp. 323-334
Author(s):  
Estela Jacinto
Keyword(s):  
Genetics ◽  
2003 ◽  
Vol 164 (1) ◽  
pp. 247-258 ◽  
Author(s):  
Jinghong Li ◽  
Willis X Li

Abstract Overactivation of receptor tyrosine kinases (RTKs) has been linked to tumorigenesis. To understand how a hyperactivated RTK functions differently from wild-type RTK, we conducted a genome-wide systematic survey for genes that are required for signaling by a gain-of-function mutant Drosophila RTK Torso (Tor). We screened chromosomal deficiencies for suppression of a gain-of-function mutation tor (torGOF), which led to the identification of 26 genomic regions that, when in half dosage, suppressed the defects caused by torGOF. Testing of candidate genes in these regions revealed many genes known to be involved in Tor signaling (such as those encoding the Ras-MAPK cassette, adaptor and structural molecules of RTK signaling, and downstream target genes of Tor), confirming the specificity of this genetic screen. Importantly, this screen also identified components of the TGFβ (Dpp) and JAK/STAT pathways as being required for TorGOF signaling. Specifically, we found that reducing the dosage of thickveins (tkv), Mothers against dpp (Mad), or STAT92E (aka marelle), respectively, suppressed torGOF phenotypes. Furthermore, we demonstrate that in torGOF embryos, dpp is ectopically expressed and thus may contribute to the patterning defects. These results demonstrate an essential requirement of noncanonical signaling pathways for a persistently activated RTK to cause pathological defects in an organism.


Genetics ◽  
2000 ◽  
Vol 156 (2) ◽  
pp. 763-774 ◽  
Author(s):  
Willis Li ◽  
Elizabeth Noll ◽  
Norbert Perrimon

Abstract Raf is an essential downstream effector of activated p21Ras (Ras) in transducing proliferation or differentiation signals. Following binding to Ras, Raf is translocated to the plasma membrane, where it is activated by a yet unidentified “Raf activator.” In an attempt to identify the Raf activator or additional molecules involved in the Raf signaling pathway, we conducted a genetic screen to identify genomic regions that are required for the biological function of Drosophila Raf (Draf). We tested a collection of chromosomal deficiencies representing ∼70% of the autosomal euchromatic genomic regions for their abilities to enhance the lethality associated with a hypomorphic viable allele of Draf, DrafSu2. Of the 148 autosomal deficiencies tested, 23 behaved as dominant enhancers of Draf  Su2, causing lethality in Draf  Su2 hemizygous males. Four of these deficiencies identified genes known to be involved in the Drosophila Ras/Raf (Ras1/Draf) pathway: Ras1, rolled (rl, encoding a MAPK), 14-3-3ϵ, and bowel (bowl). Two additional deficiencies removed the Drosophila Tec and Src homologs, Tec29A and Src64B. We demonstrate that Src64B interacts genetically with Draf and that an activated form of Src64B, when overexpressed in early embryos, causes ectopic expression of the Torso (Tor) receptor tyrosine kinase-target gene tailless. In addition, we show that a mutation in Tec29A partially suppresses a gain-of-function mutation in tor. These results suggest that Tec29A and Src64B are involved in Tor signaling, raising the possibility that they function to activate Draf. Finally, we discovered a genetic interaction between Draf  Su2 and Df(3L)vin5 that revealed a novel role of Draf in limb development. We find that loss of Draf activity causes limb defects, including pattern duplications, consistent with a role for Draf in regulation of engrailed (en) expression in imaginal discs.


Author(s):  
Yanlin Liu ◽  
Xiaoli Duan ◽  
Xiaodi Zhao ◽  
Wenlong Ding ◽  
Yaowei Wang ◽  
...  
Keyword(s):  

2021 ◽  
Vol 7 (8) ◽  
pp. 624
Author(s):  
Ulises Carrasco-Navarro ◽  
Jesús Aguirre

Reactive oxygen species (ROS) regulate several aspects of cell physiology in filamentous fungi including the antioxidant response and development. However, little is known about the signaling pathways involved in these processes. Here, we report Aspergillus nidulans global phosphoproteome during mycelial growth and show that under these conditions, H2O2 induces major changes in protein phosphorylation. Among the 1964 phosphoproteins we identified, H2O2 induced the phosphorylation of 131 proteins at one or more sites as well as the dephosphorylation of a larger set of proteins. A detailed analysis of these phosphoproteins shows that H2O2 affected the phosphorylation of critical regulatory nodes of phosphoinositide, MAPK, and TOR signaling as well as the phosphorylation of multiple proteins involved in the regulation of gene expression, primary and secondary metabolism, and development. Our results provide a novel and extensive protein phosphorylation landscape in A. nidulans, indicating that H2O2 induces a shift in general metabolism from anabolic to catabolic, and the activation of multiple stress survival pathways. Our results expand the significance of H2O2 in eukaryotic cell signaling.


2021 ◽  
Vol 56 (9) ◽  
pp. 1213-1214
Author(s):  
Frej Tulin ◽  
Zhenzhen Zhang ◽  
Zhi-Yong Wang
Keyword(s):  

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Karen Baker ◽  
Irene A Gyamfi ◽  
Gregory I Mashanov ◽  
Justin E Molloy ◽  
Michael A Geeves ◽  
...  

Cells respond to changes in their environment through signaling networks that modulate cytoskeleton and membrane organization to coordinate cell-cycle progression, polarized cell growth and multicellular development. Here, we define a novel regulatory mechanism by which the motor activity and function of the fission yeast type one myosin, Myo1, is modulated by TORC2-signalling-dependent phosphorylation. Phosphorylation of the conserved serine at position 742 (S742) within the neck region changes both the conformation of the neck region and the interactions between Myo1 and its associating calmodulin light chains. S742 phosphorylation thereby couples the calcium and TOR signaling networks that are involved in the modulation of myosin-1 dynamics to co-ordinate actin polymerization and membrane reorganization at sites of endocytosis and polarised cell growth in response to environmental and cell-cycle cues.


Sign in / Sign up

Export Citation Format

Share Document