scholarly journals Anticancer activities of toxic isolate of Xestospongia testudinaria sponge

2019 ◽  
Vol 12 (9) ◽  
pp. 1434-1440
Author(s):  
Made Dira Swantara ◽  
Wiwik Susanah Rita ◽  
Nyoman Suartha ◽  
Kadek Karang Agustina

Aim: The purposes of this study were to determine the anticancer activity of Xestospongia testudinaria sponge isolate and identify the responsible compounds. Materials and Methods: The metabolites were extracted using methanol maceration at room temperature. The separation and purification of metabolites were performed using fractionation and column chromatography. The toxicity was examined using the brine shrimp lethality assay, and the toxic isolates were tested for anticancer activity against HeLa cells. Gas chromatography-mass spectrometry analysis was used to identify the compounds in the isolate. Results: When the methanol extract was partitioned with n-hexane, chloroform, and n-butanol, the chloroform fraction was the most toxic, with a concentration that results in 50% lethality (LC50) value of 39.81 ppm. After separation of the chloroform extract, fraction B (FB) was the most toxic, with an LC50 value of 44.67 ppm. The isolate from FB showed anticancer activity with a concentration at which 50% of growth was inhibited (IC50) of 2.273 ppm. In total, 21 compounds were identified in anticancer isolates: Nonanedioic acid; tetradecanoic acid; trans-phytol; 2-pentadecanone- 6,10,14-trimethyl; pentadecanoic acid; 2-hexadecen-1-ol, 3,7,11,15-tetramethyl-; pentadecanoic acid; 2-hexadecen-1-ol, 3,7,11,15-tetramethyl-; 2,3,7-trimethyloctanal; palmitic acid; docosanoic acid, ethyl ester; 1,E-11,Z-13-octadecatriene; chloromethyl 4-chlorododecanoate; 1-tricosene; 9,12-octadecadienoic acid; 4,8,12,16-tetramethylheptadecan-4-olide; 1-docosene; heneicosane; phosphonic acid, dioctadecyl ester; dodecane,4,6-dimethyl-; n-tetratriacontane; 1-iodohexadecane; and n-heneicosane. Conclusion: These findings indicate that the isolate of X. testudinaria can be used as a natural anticancer toward HeLa cell.

2008 ◽  
Vol 75 (5) ◽  
pp. 1339-1344 ◽  
Author(s):  
Amy V. Callaghan ◽  
Meghan Tierney ◽  
Craig D. Phelps ◽  
L. Y. Young

ABSTRACT Nitrate-reducing enrichments, amended with n-hexadecane, were established with petroleum-contaminated sediment from Onondaga Lake. Cultures were serially diluted to yield a sediment-free consortium. Clone libraries and denaturing gradient gel electrophoresis analysis of 16S rRNA gene community PCR products indicated the presence of uncultured alpha- and betaproteobacteria similar to those detected in contaminated, denitrifying environments. Cultures were incubated with H34-hexadecane, fully deuterated hexadecane (d 34-hexadecane), or H34-hexadecane and NaH13CO3. Gas chromatography-mass spectrometry analysis of silylated metabolites resulted in the identification of [H29]pentadecanoic acid, [H25]tridecanoic acid, [1-13C]pentadecanoic acid, [3-13C]heptadecanoic acid, [3-13C]10-methylheptadecanoic acid, and d 27-pentadecanoic, d 25-, and d 2 4-tridecanoic acids. The identification of these metabolites suggests a carbon addition at the C-3 position of hexadecane, with subsequent β-oxidation and transformation reactions (chain elongation and C-10 methylation) that predominantly produce fatty acids with odd numbers of carbons. Mineralization of [1-14C]hexadecane was demonstrated based on the recovery of 14CO2 in active cultures.


2019 ◽  
Vol 3 (1) ◽  
pp. 42
Author(s):  
Choiroel Anam

 Nata adalah selulosa ekstraseluler yang dihasilkan dari aktiivitas bakteri Acetobacter xylinum dalam proses fermentasi, dan  merupakan salah satu makanan kesehatan yang kaya akan serat. Nata yang paling umum ditemukan adalah nata de coco dengan media fermentasi air kelapa. Faktor-faktor dominan dalam pembuatan nata adalah ketersediaan nutrisi (karbon dan nitrogen), derajat keasaman dan media fermentasi yang digunakan. Penentuan kualitas terbaik media air kelapa yang digunakan, penentuan konsentrasi nitrogen dan sukrosa yang ditambahkan serta kondisi pH optimum  akan menghasilkan nata yang maksimal.Penelitian ini bertujuan untuk mencari kualitas terbaik pada fermentasi dalam proses pembuatan nata de coco, dan mengetahui senyawa fungsional yang terdapat pada nata de coco sebagai pangan fungsional. Hasil pengujian analisa sampel nata de coco menggunakan Gas chromatography–mass spectrometry (GC-MS) menunjukkan senyawa yang sangat bermaaf bagi kesehatan tubuh manusia. Sepuluh besar senyawa fungsional yag terdapat pada nata de coco yaitu:  Benzeneacetic Acid sebagai anti fungal dan scavenger. Hexadecanoid Acid memiliki efek anti-inflamasi, anti bakteri dan anti fungi. 22-Hydroxyhopane, Tetradecanoic Acid yang mempunyai aktivitas antimikroba dan antifungal. 9-Octadecanoid Acid, ρ-Cresol  memiliki aktivitas antioksidan. 9-Octadecenamide berfungsi untuk mencegah Alzheimer, menurunkan kolesterol dan menurunkan tekanan darah, Senyawa fungsional yang lain diantaranya (Z), Phenol, 4-(2-aminoethyl), Pentadecanoic Acid, 1-Heptadecanecarboxylic acid. Komposisi kimia nata  de coco dihasilkan kadar air 95%.  abu 0,35% dan protein 0,45%. Penelitian menunjukkan peningkatkan produksi nata dengan kualitas  yang baik sesuai persyaratan standar yang telah ditetapkan dan mempunyai senyawa senyawa  yang bermanfaat sebagai pangan fungsional yang bermanfaat bagi kesehatan.


2014 ◽  
Vol 34 (7) ◽  
pp. 732-743 ◽  
Author(s):  
Y Zhang ◽  
P Wang ◽  
Y Xiao ◽  
X Wang ◽  
S Yang ◽  
...  

Pyropolyporus fomentarius, a fungus of the polyporaceae family, has been used in the treatment of various diseases, such as gastroenteric disorder, hepatocirrhosis, oral ulcer, inflammation, and several cancers. This study was conducted to investigate the compositions and cell growth inhibition effects of P. fomentarius chloroform (CHCl3) fraction and to clarify the possible mechanisms. Gas chromatography–mass spectrometry analysis was performed to investigate the composition of the P. fomentarius CHCl3 fraction. Cell viability was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell membrane damage was evaluated with a scanning electron microscope and flow cytometry following propidium iodide and bis-(1,3-dibarbituric acid)-trimethine oxanol staining. Apoptosis was analyzed using annexin V-PE/7-amino-actinomycin D (7-AAD) staining. Generation of intracellular calcium ion (Ca2+), reactive oxygen species (ROS), and changes of mitochondrial membrane potential (Δ ψm) were detected by flow cytometry using fluo 3-acetoxymethyl ester, 2′,7′-dichlorofluorescin-diacetate, and rhodamine 123. Our obtained data indicate that P. fomentarius CHCl3 fraction could inhibit proliferation of K562 cells depending on both the dosage and the incubation time, cause cell membrane damage, influence intracellular [Ca2+]i variation, promote the yield of ROS, decrease the level of Δψm, and initiate the apoptotic response in K562 cells.


1991 ◽  
Vol 26 (1) ◽  
pp. 1-16 ◽  
Author(s):  
T.P. Murphy ◽  
H. Brouwer ◽  
M.E. Fox ◽  
E. Nagy

Abstract Eighty-one sediment cores were collected to determine the extent of coal tar contamination in a toxic area of Hamilton Harbour. Over 800 samples were analyzed by a UV spectrophotometric technique that was standardized with gas chromatography/mass spectrometry analysis. The coal tar distribution was variable. The highest concentrations were near the Stelco outfalls and the Hamilton-Wentworth combined sewer outfalls. The total concentration of the 16 polynuclear aromatic hydrocarbons (PAHs) in 48,300 m3 of near-surface sediments exceeded 200 µg/g.


Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 94
Author(s):  
Esther Borrás ◽  
Luis Antonio Tortajada-Genaro ◽  
Francisco Sanz ◽  
Amalia Muñoz

The chemical characterization of aerosols, especially fine organic fraction, is a relevant atmospheric challenge because their composition highly depends on localization. Herein, we studied the concentration of multi-oxygenated organic compounds in the western Mediterranean area, focusing on sources and the effect of air patterns. The organic aerosol fraction ranged 3–22% of the total organic mass in particulate matter (PM)2.5. Seventy multi-oxygenated organic pollutants were identified by gas chromatography–mass spectrometry, including n-alkanones, n-alcohols, anhydrosugars, monocarboxylic acids, dicarboxylic acids, and keto-derivatives. The highest concentrations were found for carboxylic acids, such as linoleic acid, tetradecanoic acid and, palmitic acid. Biomarkers for vegetation sources, such as levoglucosan and some fatty acids were detected at most locations. In addition, carboxylic acids from anthropogenic sources—mainly traffic and cooking—have been identified. The results indicate that the organic PM fraction in this region is formed mainly from biogenic pollutants, emitted directly by vegetation, and from the degradation products of anthropogenic and biogenic volatile organic pollutants. Moreover, the chemical profile suggested that this area is interesting for aerosol studies because several processes such as local costal breezes, industrial emissions, and desert intrusions affect fine PM composition.


AMB Express ◽  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jie Tang ◽  
Dan Lei ◽  
Min Wu ◽  
Qiong Hu ◽  
Qing Zhang

Abstract Fenvalerate is a pyrethroid insecticide with rapid action, strong targeting, broad spectrum, and high efficiency. However, continued use of fenvalerate has resulted in its widespread presence as a pollutant in surface streams and soils, causing serious environmental pollution. Pesticide residues in the soil are closely related to food safety, yet little is known regarding the kinetics and metabolic behaviors of fenvalerate. In this study, a fenvalerate-degrading microbial strain, CD-9, isolated from factory sludge, was identified as Citrobacter freundii based on morphological, physio-biochemical, and 16S rRNA sequence analysis. Response surface methodology analysis showed that the optimum conditions for fenvalerate degradation by CD-9 were pH 6.3, substrate concentration 77 mg/L, and inoculum amount 6% (v/v). Under these conditions, approximately 88% of fenvalerate present was degraded within 72 h of culture. Based on high-performance liquid chromatography and gas chromatography-mass spectrometry analysis, ten metabolites were confirmed after the degradation of fenvalerate by strain CD-9. Among them, o-phthalaldehyde is a new metabolite for fenvalerate degradation. Based on the identified metabolites, a possible degradation pathway of fenvalerate by C. freundii CD-9 was proposed. Furthermore, the enzyme localization method was used to study CD-9 bacteria and determine that its degrading enzyme is an intracellular enzyme. The degradation rate of fenvalerate by a crude enzyme solution for over 30 min was 73.87%. These results showed that strain CD-9 may be a suitable organism to eliminate environmental pollution by pyrethroid insecticides and provide a future reference for the preparation of microbial degradation agents and environmental remediation.


2021 ◽  
pp. 030098582110021
Author(s):  
Yuta Takaichi ◽  
James K. Chambers ◽  
Moeko Shiroma-Kohyama ◽  
Makoto Haritani ◽  
Yumi Une ◽  
...  

Canavan disease is an autosomal recessive leukodystrophy caused by mutations in the gene encoding aspartoacylase (ASPA), which hydrolyses N-acetylaspartate (NAA) to acetate and aspartate. A similar feline neurodegenerative disease associated with a mutation in the ASPA gene is reported herein. Comprehensive clinical, genetic, and pathological analyses were performed on 4 affected cats. Gait disturbance and head tremors initially appeared at 1 to 19 months of age. These cats eventually exhibited dysstasia and seizures and died at 7 to 53 months of age. Magnetic resonance imaging of the brain revealed diffuse symmetrical intensity change of the cerebral cortex, brainstem, and cerebellum. Gas chromatography–mass spectrometry analysis of urine showed significant excretion of NAA. Genetic analysis of the 4 affected cats identified a missense mutation (c.859G>C) in exon 6 of the ASPA gene, which was not detected in 4 neurologically intact cats examined as controls. Postmortem analysis revealed vacuolar changes predominantly distributed in the gray matter of the cerebrum and brain stem as well as in the cerebellar Purkinje cell layer. Immunohistochemically, these vacuoles were surrounded by neurofilaments and sometimes contained MBP- and Olig2-positive cells. Ultrastructurally, a large number of intracytoplasmic vacuoles containing mitochondria and electron-dense granules were detected in the cerebral cortex. All 4 cats were diagnosed as spongy encephalopathy with a mutation in the ASPA gene, a syndrome analogous to human Canavan disease. The histopathological findings suggest that feline ASPA deficiency induces intracytoplasmic edema in neurons and oligodendrocytes, resulting in spongy degeneration of the central nervous system.


Sign in / Sign up

Export Citation Format

Share Document