scholarly journals Influence of some parameters on the ability of Listeria monocytogenes, Listeria innocua, and Escherichia coli to form biofilms

2019 ◽  
Vol 12 (3) ◽  
pp. 459-465 ◽  
Author(s):  
Sara Lezzoum-Atek ◽  
Leila Bouayad ◽  
Taha Mossadak Hamdi

Aim: The present study was conducted to evaluate the capacity of Listeria monocytogenes (L.m), Listeria innocua (L.i), and Escherichia coli to form biofilms on polystyrene support under different parameters by performing crystal violet (CV) staining technique. Materials and Methods: Different suspensions were prepared with single strains and with multiple combinations of strains including two serogroups of L.m (IIa and IIb), L.i, and E. coli strains at different microbial load. Selected strains and combinations were grown in biofilms for 6 days attached to polystyrene microplates under aerobic and microaerophilic conditions. The evaluation of the power of adhesion and biofilm formation was determined by CV staining followed by the measurement of optical density at 24 h, 72 h, and 6 days incubation time with and without renewal of the culture medium. Results: All the strains tested, presented more or less adhesion power depending on the variation of the studied parameters as well as the ability to form multispecies biofilms. Their development is more important by renewing the culture medium and increasing the initial load of bacteria. The ability to adhere and form biofilms differs from one serogroup to another within the same species. In bacterial combination, strains and species of bacteria adopt different behaviors. Conclusion: The ability to form biofilms is a key factor in the persistence of tested strains in the environment. Our study showed that L.m, L.i, and E. coli could adhere to polystyrene and form biofilms under different conditions. More researches are necessary to understand the mechanisms of biofilm formation and the influence of different parameters in their development.

2020 ◽  
Vol 8 (2) ◽  
pp. 201
Author(s):  
Anja Klančnik ◽  
Ivana Gobin ◽  
Barbara Jeršek ◽  
Sonja Smole Možina ◽  
Darinka Vučković ◽  
...  

The aim of this study was to evaluate Campylobacter jejuni NTCT 11168 adhesion to abiotic and biotic surfaces when grown in co-culture with Escherichia coli ATCC 11229 and/or Listeria monocytogenes 4b. Adhesion of C. jejuni to polystyrene and to Caco-2 cells and Acanthamoeba castellanii was lower for at least 3 log CFU/mL compared to E. coli and L. monocytogenes. Electron micrographs of ultrathin sections revealed interactions of C. jejuni with host cells. In co-culture with E. coli and L. monocytogenes, adhesion of C. jejuni to all tested surfaces was significantly increased for more than 1 log CFU/mL. There was 10% higher aggregation for C. jejuni than for other pathogens, and high co-aggregation of co-cultures of C. jejuni with E. coli and L. monocytogenes. These data show that C. jejuni in co-cultures with E. coli and L. monocytogenes present significantly higher risk than C. jejuni as mono-cultures, which need to be taken into account in risk evaluation. C. jejuni adhesion is a prerequisite for their colonization, biofilm formation, and further contamination of the environment. C. jejuni survival under adverse conditions as a factor in their pathogenicity and depends on their adhesion to different surfaces, not only as individual strains, but also in co-cultures with other bacteria like E. coli and L. monocytogenes.


Diseases ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 11 ◽  
Author(s):  
Shane Whelan ◽  
Mary Claire O’Grady ◽  
Dan Corcoran ◽  
Karen Finn ◽  
Brigid Lucey

Antibiotic resistance is increasing to an extent where efficacy is not guaranteed when treating infection. Biofilm formation has been shown to complicate treatment, whereby the formation of biofilm is associated with higher minimum inhibitory concentration values of antibiotic. The objective of the current paper was to determine whether biofilm formation is variable among uropathogenic Escherichia coli isolates and whether formation is associated with recurrent urinary tract infection (UTI), and whether it can be predicted by phenotypic appearance on culture medium A total of 62 E. coli isolates that were reported as the causative agent of UTI were studied (33 from patients denoted as having recurrent UTI and 29 from patients not specified as having recurrent UTI). The biofilm forming capability was determined using a standard microtitre plate method, using E. coli ATCC 25922 as the positive control. The majority of isolates (93.6%) were found to be biofilm formers, whereby 81% were denoted as strong or very strong producers of biofilm when compared to the positive control. Through the use of a Wilcox test, the difference in biofilm forming propensity between the two patient populations was found to not be statistically significant (p = 0.5). Furthermore, it was noted that colony morphology was not a reliable predictor of biofilm-forming propensity. The findings of this study indicate that biofilm formation is very common among uropathogens, and they suggest that the biofilm-forming capability might be considered when treating UTI. Clinical details indicating a recurrent infection were not predictors of biofilm formation.


1999 ◽  
Vol 62 (10) ◽  
pp. 1123-1127 ◽  
Author(s):  
SHANSHAN ZHANG ◽  
AZLIN MUSTAPHA

Nisin or nisin combined with EDTA was used to treat fresh beef. Beef cubes (2.5 by 2.5 by 2.5 cm) that were inoculated with approximately 7 log CFU/ml of Listeria monocytogenes Scott A or Escherichia coli O157:H7 505 B were dipped in the following solutions: (i) H2O, (ii) HCl, (iii) nisin, (iv) EDTA, or (v) nisin combined with EDTA, respectively, for 10 min each, with an exception of one set of control beef samples without treatment. Beef samples were then drip-dried for 15 min, vacuum packaged, and stored at 4°C for up to 30 days. The pH on beef after different treatments was not a key factor in preventing bacterial growth. Treatment with nisin or with nisin combined with EDTA reduced the population of L. monocytogenes by 2.01 and 0.99 log CFU/cm2 as compared to the control, respectively, under the conditions of vacuum package and storage at 4°C for up to 30 days. However, the effect of nisin and nisin combined with EDTA against E. coli O157:H7 505 B was marginal at 1.02 log CFU/cm2 and 0.8 log CFU/cm2 reductions, respectively.


2013 ◽  
Vol 76 (3) ◽  
pp. 435-439 ◽  
Author(s):  
AARON R. UESUGI ◽  
LILLIAN HSU ◽  
CARMEN I. MORARU

Pulsed light (PL) treatment can effectively inactivate a large proportion of contaminating bacteria on surfaces and in clear solutions. An important issue that needs to be investigated is whether repeated exposure to PL treatment causes any changes to the growth and resistance behavior of the bacteria surviving the treatment. To test this, three challenge microorganisms were used: Listeria monocytogenes, Listeria innocua, and Escherichia coli. Cells of the challenge bacteria were treated with either low or high PL doses. Survivors of the PL treatment were enumerated, isolated, regrown, and exposed again to PL treatment. PL inactivation curves were generated for the survivors of each exposure cycle (as well as controls) to examine possible differences induced by repeated treatments. Growth curves of L. monocytogenes, L. innocua, and E. coli isolates recovered from exposure to either 1.1 or 10.1 J/cm2 were not significantly different from the growth curves of untreated cells. Reduction levels of up to 4 and up to 6 log CFU were obtained after exposure to 1.1 and 10.1 J/cm2, respectively, both for the controls and the repeatedly treated and recovered isolates. These results show that PL did not significantly change the growth kinetics or resistance to PL of the target microorganisms after up to 10 exposures. These findings have significance for the practical application of PL treatment, as they indicate that this technology does not select for microorganisms with increased resistance.


Author(s):  
Yu. G. Maksimova ◽  
◽  
Ya. E. Bykova ◽  
◽  

The effect of purified and unpurified multi-walled carbon nanotubes on the biofilm formation of Esche-richia coli strains isolated from different sources has been studied. It has been shown that carbon nano-materials in the culture medium do not inhibit biofilm formation, but on days 1–3 of growth lead to the formation of more massive biofilms of some strains. Significantly more intense destruction of mature bio-films of E. coli K12, E. coli K12 TG1 (pXen7) and one natural strain in the presence of carbon nanotubes in the medium was noted. No clear dependence of biofilm formation and destruction of formed biofilms on the degree of purification of nanotubes was found.


Molecules ◽  
2020 ◽  
Vol 25 (2) ◽  
pp. 383 ◽  
Author(s):  
Maria Grazia Cusimano ◽  
Vita Di Stefano ◽  
Maria La Giglia ◽  
Vincenzo Di Marco Lo Presti ◽  
Domenico Schillaci ◽  
...  

The main objective of this study was to evaluate the efficacy of thymol in controlling environmental contamination in food processing facilities. The effect of thymol was tested as an agent to prevent planktonic and bacterial biofilm growth of twenty-five Listeria monocytogenes isolates from a variety of foods and five Escherichia coli isolates from a farm. The E. coli isolates were positive for extended spectrum β-lactamase (ESBL) genes. All isolates and reference strains were susceptible to thymol at Minimum inhibitory concentration (MIC) values ranging from 250 to 800 μg/mL. An interesting activity of interference with biofilm formation of L. monocytogenes and E. coli was found for thymol at sub-MIC concentrations of 200, 100, 75, and 50 μg/mL. Anti-biofilm activity ranging from 59.71% to 66.90% against pre-formed 24-h-old L. monocytogenes biofilms at concentrations of 500 or 800 µg/mL, corresponding to 2× MIC, was determined against free-living forms of six isolates chosen as the best or moderate biofilm producers among the tested strains. The property of thymol to attack L. monocytogenes biofilm formation was also observed at a concentration of 100 µg/mL, corresponding to 1/4 MIC, by using a stainless-steel model to simulate the surfaces in food industries. This study gives information on the use of thymol in food processing setting.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Huiyi Song ◽  
Ni Lou ◽  
Jianjun Liu ◽  
Hong Xiang ◽  
Dong Shang

Abstract Background Escherichia coli (E. coli) is the principal pathogen that causes biofilm formation. Biofilms are associated with infectious diseases and antibiotic resistance. This study employed proteomic analysis to identify differentially expressed proteins after coculture of E. coli with Lactobacillus rhamnosus GG (LGG) microcapsules. Methods To explore the relevant protein abundance changes after E. coli and LGG coculture, label-free quantitative proteomic analysis and qRT-PCR were applied to E. coli and LGG microcapsule groups before and after coculture, respectively. Results The proteomic analysis characterised a total of 1655 proteins in E. coli K12MG1655 and 1431 proteins in the LGG. After coculture treatment, there were 262 differentially expressed proteins in E. coli and 291 in LGG. Gene ontology analysis showed that the differentially expressed proteins were mainly related to cellular metabolism, the stress response, transcription and the cell membrane. A protein interaction network and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis indicated that the differentiated proteins were mainly involved in the protein ubiquitination pathway and mitochondrial dysfunction. Conclusions These findings indicated that LGG microcapsules may inhibit E. coli biofilm formation by disrupting metabolic processes, particularly in relation to energy metabolism and stimulus responses, both of which are critical for the growth of LGG. Together, these findings increase our understanding of the interactions between bacteria under coculture conditions.


2018 ◽  
Vol 19 (0) ◽  
Author(s):  
Priscila Alves Dias ◽  
Daiani Teixeira Silva ◽  
Cláudio Dias Timm

Resumo Kefir é o produto da fermentação do leite pelos grãos de kefir. Esses grãos contêm uma mistura simbiótica de bactérias e leveduras imersas em uma matriz composta de polissacarídeos e proteínas. Muitos benefícios à saúde humana têm sido atribuídos ao kefir, incluindo atividade antimicrobiana contra bactérias Gram positivas e Gram negativas. A atividade antimicrobiana de 60 microrganismos isolados de grãos de kefir, frente à Escherichia coli O157:H7, Salmonella enterica subsp. enterica sorotipos Typhimurium e Enteritidis, Staphylococcus aureus e Listeria monocytogenes, foi estudada através do teste do antagonismo. A ação antimicrobiana dos sobrenadantes das bactérias ácido-lácticas que apresentaram atividade no teste do antagonismo foi testada. O experimento foi repetido usando sobrenadantes com pH neutralizado. Salmonella Typhimurium e Enteritidis sobreviveram por 24 horas no kefir em fermentação. E. coli O157:H7, S. aureus e L. monocytogenes foram recuperados até 72 horas após o início da fermentação. Todos os isolados apresentaram atividade antimicrobiana contra pelo menos um dos patógenos usados no teste do antagonismo. Sobrenadantes de 25 isolados apresentaram atividade inibitória e três mantiveram essa atividade com pH neutralizado. As bactérias patogênicas estudadas sobreviveram por tempo superior àquele normalmente utilizado para a fermentação do kefir artesanal, o que caracteriza perigo em potencial para o consumidor quando a matéria-prima não apresentar segurança sanitária. Lactobacillus isolados de grãos de kefir apresentam atividade antimicrobiana contra cepas de E. coli O157:H7, Salmonella sorotipos Typhimurium e Enteritidis, S. aureus e L. monocytogenes além daquela exercida pela diminuição do pH.


Microbiology ◽  
2021 ◽  
Vol 167 (3) ◽  
Author(s):  
Sathi Mallick ◽  
Shanti Kiran ◽  
Tapas Kumar Maiti ◽  
Anindya S. Ghosh

Escherichia coli low-molecular-mass (LMM) Penicillin-binding proteins (PBPs) help in hydrolysing the peptidoglycan fragments from their cell wall and recycling them back into the growing peptidoglycan matrix, in addition to their reported involvement in biofilm formation. Biofilms are external slime layers of extra-polymeric substances that sessile bacterial cells secrete to form a habitable niche for themselves. Here, we hypothesize the involvement of Escherichia coli LMM PBPs in regulating the nature of exopolysaccharides (EPS) prevailing in its extra-polymeric substances during biofilm formation. Therefore, this study includes the assessment of physiological characteristics of E. coli CS109 LMM PBP deletion mutants to address biofilm formation abilities, viability and surface adhesion. Finally, EPS from parent CS109 and its ΔPBP4 and ΔPBP5 mutants were purified and analysed for sugars present. Deletions of LMM PBP reduced biofilm formation, bacterial adhesion and their viability in biofilms. Deletions also diminished EPS production by ΔPBP4 and ΔPBP5 mutants, purification of which suggested an increased overall negative charge compared with their parent. Also, EPS analyses from both mutants revealed the appearance of an unusual sugar, xylose, that was absent in CS109. Accordingly, the reason for reduced biofilm formation in LMM PBP mutants may be speculated as the subsequent production of xylitol and a hindrance in the standard flow of the pentose phosphate pathway.


2016 ◽  
Vol 79 (7) ◽  
pp. 1143-1153 ◽  
Author(s):  
JOHN C. FRELKA ◽  
GORDON R. DAVIDSON ◽  
LINDA J. HARRIS

ABSTRACT After harvest, inshell walnuts are dried using low-temperature forced air and are then stored in bins or silos for up to 1 year. To better understand the survival of bacteria on inshell walnuts, aerobic plate counts (APCs) and Escherichia coli–coliform counts (ECCs) were evaluated during commercial storage (10 to 12°C and 63 to 65% relative humidity) over 9 months. APCs decreased by 1.4 to 2.0 log CFU per nut during the first 5 months of storage, and ECCs decreased by 1.3 to 2.2 log CFU per nut in the first month of storage. Through the remaining 4 to 8 months of storage, APCs and ECCs remained unchanged (P > 0.05) or decreased by <0.15 log CFU per nut per month. Similar trends were observed on kernels extracted from the inshell walnuts. APCs and ECCs were consistently and often significantly higher on kernels extracted from visibly broken inshell walnuts than on kernels extracted from visibly intact inshell walnuts. Parameters measured in this study were used to determine the survival of five-strain cocktails of E. coli O157:H7, Listeria monocytogenes, and Salmonella inoculated onto freshly hulled inshell walnuts (~8 log CFU/g) after simulated commercial drying (10 to 12 h; 40°C) and simulated commercial storage (12 months at 10°C and 65% relative humidity). Populations declined by 2.86, 5.01, and 4.40 log CFU per nut for E. coli O157:H7, L. monocytogenes, and Salmonella, respectively, after drying and during the first 8 days of storage. Salmonella populations changed at a rate of −0.33 log CFU per nut per month between days 8 and 360, to final levels of 2.83 ± 0.79 log CFU per nut. E. coli and L. monocytogenes populations changed by −0.17 log CFU per nut per month and −0.26 log CFU per nut per month between days 8 and 360, respectively. For some samples, E. coli or L. monocytogenes populations were below the limit of detection by plating (0.60 log CFU per nut) by day 183 or 148, respectively; at least one of the six samples was positive at each subsequent sampling time by either plating or by enrichment.


Sign in / Sign up

Export Citation Format

Share Document