scholarly journals INFLUENCE OF STRONG MONSOON-DOMINATED CLIMATE ON BIOGEOCHEMISTRY OF THE HEAVILY ANTHROPOGENIC IMPACTED BRANTAS RIVER ESTUARIES AND MADURA STRAIT COASTAL WATER, EAST JAVA, INDONESIA

2015 ◽  
Vol 36 (2) ◽  
pp. 37-49
Author(s):  
M.S. Nugrahadi

Brantas River basin and Madura Strait in East Java Indonesia, are subject to heavily change in land use and land cover, and Brantas River Basin is a very important densely populated area in East Java, Indonesia for agriculture, industry as well as for settlement. The aim of the research is to elucidate the fate of transformation of bio-elements (organic carbon, Nitrogen (N), Phosphorus (P), and Silicate (Si)) and its seasonal variability. The contrast river discharge combined with tide generates the distinctive mixing zone during rainy and dry season. Dissolved Inorganic Nitrogen (DIN) and Dissolved Inorganic Phosphorus (DIP) concentrations in the river are high and decrease to the very low value seaward. N:P ratio has seasonal variation due to large discrepancy of DIN and DIP supply from land to the sea. Dissolved Inorganic Silicate (DSi) in river and estuaries is extremely higher than the average in the world (> 150 mM). Chlorophyll-a (Chl-a) in dry season in the coastal water is higher than the rainy season. Due to high Total Suspended Matter (TSM), the primary production is limited by the light in the coastal water.

2014 ◽  
Vol 65 (3) ◽  
pp. 191 ◽  
Author(s):  
Kwee Siong Tew ◽  
Pei-Jie Meng ◽  
David C. Glover ◽  
Jih-Terng Wang ◽  
Ming-Yih Leu ◽  
...  

Algal bloom is a major concern worldwide. In this study, we characterised the physical and biochemical parameters during an algal bloom event in a coastal lagoon in an attempt to predict local blooms in the future. Results showed that the highest concentrations of dissolved inorganic phosphorus (DIP), chlorophyll a (chl a) and phytoplankton abundance were found in the inner area, whereas the highest dissolved inorganic nitrogen (DIN) concentration occurred near the inlet-outlet channel. Chl a was correlated with DIP, and there was a significant exponential relationship between chl a and the nitrogen to phosphorus ratio (N/P ratio) across all sampling stations and times. A higher proportion of the variation in chl a was explained by the N/P ratio than either DIP or DIN. We found that a N/P ratio <2.38 will likely trigger an algal bloom (chl a ≥ 10 µgL–1) in the lagoon. Our results suggest that the N/P ratio could be used as an expedient and reliable measure of the potential eutrophic status of coastal lagoons.


Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2832
Author(s):  
Nikolaos Kamidis ◽  
Emmanuil Koutrakis ◽  
Argyrios Sapounidis ◽  
Georgios Sylaios

In this paper, a series of field surveys were carried out along the Nestos River watershed (NE Greece) to assess the influence of two hydropower dams (Thissavros and Platanovrisi) upon the hydrology, hydrochemistry and nutrients stoichiometry of the river. Results showed that Nestos hydrology, downstream of the reservoirs, is entirely governed by the man-induced hydropower-driven dam retention/release policy. Dams’ operation increased the retention of dissolved inorganic nitrogen (DIN) and total suspended solids (TSS) significantly, affecting their downstream fluxes, even under water release regime. On the contrary, dams’ construction and operation did not seem to influence the downstream fluxes of dissolved inorganic phosphorus (DIP) and silica (DSi), although these elements also depended on the releasing policy. DIN retention, combined with the dependence of DIP to the water level of Thissavros, resulted in alteration of the N:P ratio at the downstream part. Almost all nutrients were stored at the bottom layer of Thissavros reservoir, especially under the summer stratification regime. Platanovrisi reservoir acts as a buffer zone between Thissavros and the Nestos downstream part. Anoxic conditions in the reservoirs favour the transformation of nitrates into ammonia and the remineralization of phosphorus from sediments, creating a degraded environment for freshwater fauna.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3586
Author(s):  
Peng Zhang ◽  
Jia-Lei Xu ◽  
Ji-Biao Zhang ◽  
Jian-Xu Li ◽  
Yan-Chan Zhang ◽  
...  

Dissolved silicate (DSi) is an important nutrient in coastal water, which is used by planktonic diatoms for cell division and growth. In this study, surface water samples were collected in the eutrophic Zhanjiang Bay (ZJB) in 2019, covering a seasonal variation of coastal water and land-based source water discharge. The spatiotemporal DSi distribution, land-based sources flux input and behaviors in ZJB were studied and discussed. The results show that the DSi concentration had significant differences in spatiotemporal scale. The average concentration of DSi in ZJB was 38.00 ± 9.48 μmol·L−1 in spring, 20.23 ± 11.27 μmol·L−1 in summer, 12.48 ± 1.42 μmol·L−1 in autumn and 11.96 ± 4.85 μmol·L−1 in winter. The spatiotemporal DSi distribution showed a decreasing gradient from the top to the mouth of ZJB, which was affected by land source inputs and hydrodynamics. The land-based sources’ input concentration of DSi in ZJB ranged from 0.021 to 0.46 mol·L−1, with an average of 0.14 mol·L−1, and the total annual flux of DSi was 1.06 × 109 mol, comprising up to 8.28%, 41.55% and 50.17% in dry, normal, and wet seasons, respectively. The Suixi River contributed the highest DSi flux proportion in all seasons. The DSi in land-based source water was mainly affected by water flow discharge, diatom uptake and impacts from anthropogenic activities. Compared with dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus (DIP), the DSi was the limitation nutrient in ZJB. Additionally, the DSi concentration in the coastal water was negatively correlated with salinity. The seasonal DSi/DIN and DSi/DIP ratios in land-based sources discharge water was significantly higher than that in coastal water (p < 0.05). Land-based sources of DSi input played an important role in nutrients composition that sustained diatoms as the dominant species in ZJB.


1970 ◽  
Vol 32 (2) ◽  
pp. 49-54
Author(s):  
Suhendar I. Sachoemar ◽  
Agus Kristijono ◽  
Tetsuo Yanagi

The oceanographic characteristics of Klabat Bay in Bangka Island of Indonesia were investigated by using a series of temperature, salinity, turbidity, TSS (total suspended solid), transparency, DIN (Dissolved Inorganic Nitrogen), DIP (Dissolved Inorganic Phosphorus), DO (Dissolved Oxygen) and chlorophyll-a data in the wet season (Northwest Monsoon) and dry season (Southeast Monsoon) of 2003, respectively. The observation results show that the hydro-oceanographic characteristics of Klabat Bay in the inner part and the outer part of the bay were dominantly influenced by the terrestrial and oceanic environment, respectively. High precipitation during the wet season decreased salinity, DO and transparency and increased total suspended solid (TSS), turbidity, DIN and chlorophyll-a within the bay. The reverse occurred during the dry season, except DIP.


2013 ◽  
Vol 64 (10) ◽  
pp. 938 ◽  
Author(s):  
N. K. Carrasco ◽  
R. Perissinotto ◽  
A. Whitehead

The encroachment of agriculture and human population is placing increasing levels of stress on estuarine ecosystems worldwide. The catchment of the Seteni Estuary, a small temporarily open/closed estuary in South Africa, has been under extensive sugar cultivation for over 60 years. The present study reports on the impact of agricultural practices on the structure and dynamics of its pelagic communities over a 1-year period, from April 2008 to March 2009. The physico-chemical characteristics of the system were strongly linked to seasonality, with the system exhibiting a distinct open- and closed-mouth phase in response to rainfall. Concentrations of dissolved inorganic nitrogen (DIN) were exceptionally high in comparison to concentrations of dissolved inorganic phosphorus (DIP), resulting in high DIN : DIP ratios. Despite this, microalgal biomass remained relatively low, exhibiting maximum values of 91.7 mg chl a m–2 and 18.0 mg chl a m–3 for microphytobenthos and phytoplankton, respectively. Zooplankton abundance and biomass were significantly higher during the dry phase, with Pseudodiaptomus hessei dominating the zooplankton community both in terms of abundance and biomass throughout the study period. The ichthyofaunal community was dominated by Ambassis ambassis and Myxus capensis in terms of abundance and biomass, respectively. Results suggest that the system remains functional, but there is potential for deterioration, should the catchment become more nutrient-rich through poor management or land-use changes.


1986 ◽  
Vol 43 (4) ◽  
pp. 846-854 ◽  
Author(s):  
C. E. Campbell ◽  
E. E. Prepas

Prairie saline lakes in Canada have remarkably low chlorophyll a (Chl a) levels relative to total phosphorus (TP) and total nitrogen (TN) levels. To evaluate factors related to low Chl a levels, three Alberta saline lakes (total dissolved solids > 5 g∙L−1) were studied in 1983 and 1984. Mean summer phytoplankton Chl a ranged from 3 to 10 μg∙L−1, mean summer periphyton Chl a was less than 70 mg∙m−2, while mean summer TP and TN ranged from 2 to 13 and from 4 to 11 mg∙L−1, respectively. Chl a and phytoplankton primary production were extremely low relative to predictions from measured TP and TN levels and empirical models for freshwaters. Bioassays indicated that inorganic phosphorus was not limiting, whereas inorganic nitrogen was limiting algal growth. Bacterial densities and zooplankton dry weight were high (> 107 cells∙mL−1 and > 1.0 mg∙L−1, respectively) relative to predictions from Chl a and empirical models for freshwaters. Phytoplankton biomass was insufficient to maintain the zooplankton populations; bacteria and detritus were likely a major food source for zooplankton. This study suggests that freshwater models are not applicable to prairie saline lakes.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 320
Author(s):  
Qianyao Si ◽  
Mary G. Lusk ◽  
Patrick W. Inglett

Stormwater infiltration basins (SIBs) are vegetated depressions that collect stormwater and allow it to infiltrate to underlying groundwater. Their pollutant removal efficiency is affected by the properties of the soils in which they are constructed. We assessed the soil nitrogen (N) cycle processes that produce and remove inorganic N in two urban SIBs, with the goal of further understanding the mechanisms that control N removal efficiency. We measured net N mineralization, nitrification, and potential denitrification in wet and dry seasons along a sedimentation gradient in two SIBs in the subtropical Tampa, Florida urban area. Net N mineralization was higher in the wet season than in the dry season; however, nitrification was higher in the dry season, providing a pool of highly mobile nitrate that would be susceptible to leaching during periodic dry season storms or with the onset of the following wet season. Denitrification decreased along the sediment gradient from the runoff inlet zone (up to 5.2 μg N/g h) to the outermost zone (up to 3.5 μg N/g h), providing significant spatial variation in inorganic N removal for the SIBs. Sediment accumulating around the inflow areas likely provided a carbon source, as well as maintained stable anaerobic conditions, which would enhance N removal.


2021 ◽  
Vol 13 (9) ◽  
pp. 4926
Author(s):  
Nguyen Duc Luong ◽  
Nguyen Hoang Hiep ◽  
Thi Hieu Bui

The increasing serious droughts recently might have significant impacts on socioeconomic development in the Red River basin (RRB). This study applied the variable infiltration capacity (VIC) model to investigate spatio-temporal dynamics of soil moisture in the northeast, northwest, and Red River Delta (RRD) regions of the RRB part belongs to territory of Vietnam. The soil moisture dataset simulated for 10 years (2005–2014) was utilized to establish the soil moisture anomaly percentage index (SMAPI) for assessing intensity of agricultural drought. Soil moisture appeared to co-vary with precipitation, air temperature, evapotranspiration, and various features of land cover, topography, and soil type in three regions of the RRB. SMAPI analysis revealed that more areas in the northeast experienced severe droughts compared to those in other regions, especially in the dry season and transitional months. Meanwhile, the northwest mainly suffered from mild drought and a slightly wet condition during the dry season. Different from that, the RRD mainly had moderately to very wet conditions throughout the year. The areas of both agricultural and forested lands associated with severe drought in the dry season were larger than those in the wet season. Generally, VIC-based soil moisture approach offered a feasible solution for improving soil moisture and agricultural drought monitoring capabilities at the regional scale.


Author(s):  
Judita Koreivienė ◽  
Robertas Valčiukas ◽  
Jūratė Karosienė ◽  
Pranas Baltrėnas

Industry, transport and unsustainable agriculture result in the increased quantity of wastewater, release of nutrients and emission of carbon dioxide that promotes eutrophication of water bodies and global climate change. the application of microalgae for phycoremediation, their biomass use for human needs may increase sustainability and have a positive effect on the regional development. The experiments were carried out in order to establish the feasibility of treating the local municipal wastewater with microalgae consortia and their biomass potential for biofuel production. The results revealed that Chlorella/Scenedesmus consortium eliminated up to 99.7–99.9% of inorganic phosphorus and up to 88.6–96.4% of inorganic nitrogen from the wastewater within three weeks. The ammonium removal was more efficient than that of nitrate. Chlorella algae grew better in diluted, while Scenedesmus – in the concentrated wastewater. The consortium treated wastewater more efficiently than a single species. The maximum biomass (3.04 g/L) of algal consortium was estimated in concentrated wastewater. Algae accumulated 0.65–1.37 g of CO2/L per day in their biomass. Tus, Chlorella/Scenedesmus consortium is a promising tool for nutrients elimination from the local wastewater under the climatic conditions specific to Lithuania. However, none of the two species were able to accumulate lipids under the nitrogen starvation conditions.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2981
Author(s):  
Wen-Shiuan Lee ◽  
Jr-Chuan Huang ◽  
Chung-Te Chang ◽  
Shih-Chien Chan ◽  
Ying-San Liou ◽  
...  

Increasing anthropogenic nitrogen (N) emission via different pathways has shown prominent impact on aquatic ecosystems for decades, but the effects of interaction among climate-, landscape- and human-associated variables on riverine DIN (dissolved inorganic nitrogen, mainly NO3− and NH4+) export are unclear. In this study, the data of 43 watersheds with a wide range of climate-, landscape- and human-associated gradients across Taiwan were evaluated with partial redundancy analysis (pRDA) to examine their interactive controls on riverine DIN export. Results show that the annual riverine DIN export in Taiwan is approximately 3100 kg-N km−2 yr−1, spanning from 230 kg-N km−2 yr−1 in less disturbed watersheds (eastern and central Taiwan) to 10,000 kg-N km−2 yr−1 in watersheds with intensive human intervention (southwestern and northern Taiwan). NO3− is generally the single dominant form of DIN, while NH4+ renders significance in disturbed watersheds. Nearly all environmental variables display a positive correlation with DIN export, except for landscape setting variables (e.g., slope, area, channel length), which show a negative relationship. In terms of seasonal pattern, climate and human-landscape variables are related to NO3− export independently in the wet season, yet in the dry season climate-human variables jointly dominate NO3− export. Meanwhile, human-landscape (LH) variables (λ1 of LH > 0.60) control NH4+ exports in both seasons, and human-associated (H) variables (λ1 of H = 0.13) have a minor effect on NH4+ exports in dry season. Precisely, the contribution of controlling variables on DIN export vary with species and seasons, indicating water quality management could be time-dependent, which should be taken into consideration for designing mitigation strategies.


Sign in / Sign up

Export Citation Format

Share Document