scholarly journals Design, Synthesis, Characterization and Antiproliferative Activities of Ru(II) Complexes of Substituted Benzimidazoles

2019 ◽  
Vol 31 (10) ◽  
pp. 2311-2318
Author(s):  
Ashok K. Singh ◽  
Snehlata Katheria ◽  
Amrendra Kumar ◽  
Asiff Zafri ◽  
Mohd. Arshad

Synthesis of [Ru(PPh3)2(BZM)2Cl2] (BZM= LS1, LS2, LS3, LS4 and LS5) where LS1=(1H-benzo[d] imidazole-2-yl)methanethiol, LS2 = 2-(4-bromobutyl)-1H-benzo[d] imidazole, LS3= 2-(4-nitrophenyl)-1H-benzo[d]imidazole, LS4 = 2-(4-chlorophenyl)-1H-benzo[d]imidazole and LS5= 4-(1H-benzo[d]imidazol-2-yl)aniline (BZM = benzimidazoles, PPh3 = triphenylphosphine) and metal complexes as MR, [ Ru (PPh3)4Cl2], MLS1, MLS2, MLS3, MLS4 and MLS5 for use as potential anticancer compounds have been investigated. The complexes have been characterized by elemental analysis, IR, multinuclear NMR, UV-visible and ESI-MS spectroscopic techniques. The geometries of all complexes have been optimized by using density functional theory (DFT). The cytotoxicity effects of MR, MLS2 and LS1 were also investigated on Human cervical carcinoma cells (HeLa) by MTT assay, ROS generation and nuclear apoptosis assay. The percent cell viability assessed by MTT assay suggested that the synthesized MR, MLS2 and LS1 significantly reduce the viability of HeLa cells, in a dose-dependent manner. The inhibitory concentration (IC50) of MR, MLS2 and LS1 against HeLa cells was found 90.8, 81.8 and 115 μM, respectively. These compounds also induced the over production of intracellular reactive oxygen species (ROS) as well as the condensed and fragmented nucleus, which supports the molecular mechanism of cell death by apoptosis. The investigations suggested that the compounds MR, MLS2 and LS1 induce the cell death in HeLa cells through apoptotic pathway.

2018 ◽  
Author(s):  
Hadhemi Kaddour ◽  
Yosra Hamdi ◽  
David Vaudry ◽  
Jérôme Leprince ◽  
Hubert Vaudry ◽  
...  

AbstractOxidative stress, associated with various neurodegenerative diseases, induces imbalance in ROS generation, impairs cellular antioxidant defences and finally triggers both neurons and astroglial cell death by apoptosis. Astrocytes specifically synthesize and release endozepines, a family of regulatory peptides, including the octadecaneuropeptide (ODN). We have previously reported that ODN is a potent neuroprotective agent that prevents 6-OHDA-induced apoptotic neuronal death. The purpose of the present study was to investigate the potential glioprotective effect of ODN on 6-OHDA-induced oxidative stress and cell death in cultured rat astrocytes. Incubation of astrocytes with graded concentrations of ODN (10−14 to 10−8 M) inhibited 6-OHDA-evoked cell death in a concentration- and time-dependent manner. In addition, ODN prevented the decrease of mitochondrial activity and caspase-3 activation induced by 6-OHDA. Toxin-treated cells exhibited high level of ROS associated with a generation of H2O2 and O2°-and a reduction of both SOD and catalase activities. Co-treatment of astrocytes with low concentrations of ODN dose dependently blocked 6-OHDA-evoked ROS production and inhibition of antioxidant enzymes activities. Taken together, these data demonstrate that ODN is a potent glioprotective agent that prevents 6-OHDA-induced oxidative stress and apoptotic cell death. ODN is thus a potential candidate to delay neuronal damages in various pathological conditions involving oxidative neurodegeneration.


Proceedings ◽  
2018 ◽  
Vol 2 (25) ◽  
pp. 1586
Author(s):  
Sera Kayacan ◽  
Kaan Yilancioglu ◽  
Ayse Seda Akdemir ◽  
Fatma Kaya Dagistanli ◽  
Gulay Melikoglu ◽  
...  

: Cervical cancer is one of the frequent types of cancer seen in females. It has been suggested that natural compounds can be used effectively for cancer treatment. Apoptosis and autophagy related cell death play important roles in suppression of tumorigenesis. Apigenin and curcumin are natural products isolated from plant extracts known to have antitumoral, antibacterial and antiviral effects. Varying doses of curcumin and apigenin were applied to HeLa cancer cell lines. The expression of the genes related to apoptosis and/or autophagy related cell death were measured using qRT-PCR and cell viability was measured using MTT assay. Our results showed that curcumin and apigenin are effective on apoptosis and autophagy related cell death in HeLa cells. We suggested that these natural products seem to be a new promising therapeutic approach in cancer.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Faranak Shiassi Arani ◽  
Latifeh Karimzadeh ◽  
Seyed Mohammad Ghafoori ◽  
Mohammad Nabiuni

Introduction. Honey bee venom (HBV) has various biological activities such as the inhibitory effect on several types of cancer. Cisplatin is an old and potent drug to treat most of the cancers. Our aim in the present study was to determine antimutagenic and cytotoxic effects of HBV on mammary carcinoma, exclusively and in combination with cisplatin. Methods. In this study, 4T1 cell line was cultured in RPMI-1640 with 10% fetal bovine serum (FBS), at 37°C in humidified CO2 incubator. The cell viabilities were examined by the MTT assay. Also, HBV was screened‏ for its antimutagenic activity via the Ames test. The results were assessed by SPSS software version 19 and one-way ANOVA method considering p<0.05 level of significance. Results. The results showed that 6 mg/ml of HBV, 20 μg/ml of cisplatin, and 6 mg/ml HBV with 10 μg/ml cisplatin could induce approximately 50% of 4T1 cell death. The concentration 7 mg/ml of HBV with of 62.76% inhibitory rate showed the highest antimutagenic activity in comparison with other treatment groups. Conclusions. The MTT assay demonstrated that HBV and cisplatin could cause cell death in a dose-dependent manner. The cytotoxic effect of cisplatin also promoted by HBV. Ames test outcomes indicated that HBV could act as a significant mutagenic agent. The antimutagenic activity of HBV was increased considerably in the presence of S9 mix. Therefore, our findings have revealed that HBV can enhance the cytotoxic effect of cisplatin drug and its cancer-preventing effects.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Zheng-hua Fei ◽  
Kan Wu ◽  
Yun-liang Chen ◽  
Bing Wang ◽  
Shi-rong Zhang ◽  
...  

Several data has reported that capilliposide, extracted from a traditional Chinese medicine,Lysimachia capillipesHemsl. (LC) could exhibit inhibitory effect on cell proliferation in various cancers. The current study investigated the antitumor efficacy ofCapilliposideand elucidated its potential molecular mechanism involved in vivo and vitro. Our results indicated that LC capilliposide inhibited proliferation of lung cancer cells in a dose-dependent manner. LC capilliposide induced cell cycle arrest at the S stage and enhanced apoptosis in NSCLC cells. Treatment with LC capilliposide increased the intracellular level of ROS, which activated the mitochondrial apoptotic pathway. Blockage of ROS by NAC highly reversed the effect of LC capilliposide on apoptosis. Xenograft tumor growth was significantly lower in the LC-treated group compared with the untreated control group(P<0.05). The results also show that LC treatment does not produce any overt signs of acute toxicity in vivo. These findings demonstrate that LC capilliposide could exert an anti-tumor effect on NSCLC through mitochondrial-mediated apoptotic pathway and the activation of ROS is involved.


2019 ◽  
Vol 19 (9) ◽  
pp. 1184-1195
Author(s):  
Didem Karakas ◽  
Buse Cevatemre ◽  
Arzu Y. Oral ◽  
Veysel T. Yilmaz ◽  
Engin Ulukaya

Background:Prostate cancer is one of the most common cancer types and it is the sixth leading cause of cancer-related death in men worldwide. Even though novel treatment modalities have been developed, it still a lifethreatening disease. Therefore novel compounds are needed to improve the overall survival.Methods:In our study, it was aimed to evaluate the anti-cancer activity of newly synthesized Platinum (II) [Pt(II)] complex on DU145, LNCaP and PC-3 prostate cancer cell lines. The cytotoxic activity of Pt(II) complex was tested by SRB and ATP cell viability assays. To detect the mode of cell death; fluorescent staining, flow cytometry and western blot analyses were performed.Results:The Pt(II) complex treatment resulted in a decrease in cell viability and increasing levels of apoptotic markers (pyknotic nuclei, annexin-V, caspase 3/7 activity) and a decrease in mitochondrial membrane potential in a dose dependent manner. Among cell types, tested PC-3 cells were found to be more sensitive to Pt(II) complex, demonstrating elevation of DNA damage in this cell line. In addition, Pt(II) complex induced Endoplasmic Reticulum (ER) stress by triggering ROS generation. More importantly, pre-treatment with NAC alleviated Pt(II) complex-mediated ER stress and cell death in PC-3.Conclusion:These findings suggest an upstream role of ROS production in Pt(II) complex-induced ER stressmediated apoptotic cell death. Considering the ROS-mediated apoptosis inducing the effect of Pt(II) complex, it warrants further evaluation as a novel metal-containing anticancer drug candidate.


Author(s):  
Sahabjada Siddiqui ◽  
Qamar Zia ◽  
Mohd Abbas ◽  
Sushma Verma ◽  
Asif Jafri ◽  
...  

Background: Ce rvical cancer is the second leading cause of cancer in women, which necessitates safe and potential therapeutic agents. Objective: This study was designed to investigate the antiproliferative effect of ethanolic extract of Cissus quadrangularis L. (CQ) against human cervical adenocarcinoma HeLa cell line and in silico analysis of selected active agents against apoptosis executioner enzyme caspase-3. Methods: Cell viability was analyzed in HeLa cells at different concentrations (25-300 μg/ml) of CQ extract. Reactive oxygen species (ROS) generation, cellular apoptosis, cell cycle analysis and caspases-3 activation were evaluated. In silico structure-based virtual screening analysis was carried out using AutoDock Vina and iGEMDOCK. Results: Cell viability of HeLa cells was reduced significantly (p ˂ 0.05) in a dose-dependent manner, however, CQ extract showed non-toxic to normal kidney epithelial NRK-52E cells. CQ extract induced the intracellular ROS level, nuclear condensation and reduced the mitochondrial membrane potential (MMP) with the induction of annexin V-FITC positive cells. CQ extract arrested cells in G0/G1 and G2/M checkpoints and activated caspase-3 activity significantly in HeLa cells. The molecular docking study showed a strong binding affinity of CQ phytocomponents against the caspase-3 (PDB ID: 1GFW) protein of human apoptosis. PASS analyses of selected active components using Lipinski’s Rule of five showed promising results. Further, drug-likeness and toxicity assessment using OSIRIS Data Warrior V5.2.1 software exhibited the feasibility of phytocomponents as drug candidates with no predicted toxicity. Conclusion: This study suggested that active constituents in CQ extract can be considered as potential chemotherapeutic candidates in the management of cervical cancer.


2012 ◽  
Vol 48 (3) ◽  
pp. 497-505 ◽  
Author(s):  
Mariana Flavia da Mota ◽  
Polyana Lopes Benfica ◽  
Marize Campos Valadares

Chronic myeloid leukemia (CML) is a clonal myeloproliferative disease that shows apoptosis resistance. The introduction of imatinib mesylate has revolutionized the treatment of CML, but imatinib resistance may develop at any time and inevitably leads to disease progression. Synadenium umbellatum Pax. belongs to the Euphorbiaceae family and is popularly used in Brazil for the treatment of cancer. The cytotoxicity of Euphorbiaceae is associated with the ability of these plants and their bioactive compounds to induce apoptotic tumor cell death. Therefore, we aimed to investigate the cytotoxicity and the mechanisms of death induced by S. umbellatum extract in leukemic cells. S. umbellatum cytotoxicity was evaluated by trypan blue exclusion assay and flow cytometric analysis of the cell cycle; the mechanisms involved in K-562 cell death were investigated by light microscopy and flow cytometry. The results demonstrate that S. umbellatum is cytotoxic to leukemic cells in a concentration-dependent manner. Morphological analysis revealed that S. umbellatum treatment induced K-562 cell death by an apoptotic pathway. Furthermore, data indicate ROS overproduction, alterations in mitochondrial membrane potential, phosphatidylserine externalization and activation of caspase 9. Taken together, the results demonstrate that S. umbellatum extract arrested the cell cycle and triggered apoptosis at several levels in K-562 cells.


2007 ◽  
Vol 35 (05) ◽  
pp. 897-909 ◽  
Author(s):  
Phil-Dong Moon ◽  
Hyun-Na Koo ◽  
Hyun-Ja Jeong ◽  
Ho-Jeong Na ◽  
Su-Jin Kim ◽  
...  

The effect of Haeamtang (HAT) on the colon cancer HT-29 cells was investigated in this study. A water extract of HAT significantly decreased the number of HT-29 cells in a dose-and time-dependent manner as determined by a MTT assay. Flow cytometry results revealed a dose- and time-dependent increase of dead cells in HT-29 cells treated with HAT extract. The anticancer activity of the H AT extract is attributed to apoptosis induced in HT-29 cells, which was demonstrated by increased caspase-3 activity and poly-ADP-ribose polymerase fragmentation. A selective caspase inhibitor, z-VAD-fmk, inhibited the HAT-induced cell death. Taken together, these results demonstrate that HAT extract induces apoptosis in HT-29 cells.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Chuan Xiong ◽  
Ping Li ◽  
Qiang Luo ◽  
Chia Wei Phan ◽  
Qiang Li ◽  
...  

Morels (Morchella spp.) are a genus of edible fungi with important economic and medicinal value. In this study, a novel peptide (MIPP) was extracted from the fruiting bodies of Morchella importuna using gel filtration chromatography. Structural analysis showed that the molecular mass of MIPP is 831 Da, and it has a simple amino acid sequence: Ser-Leu-Ser-Leu-Ser-Val-Ala-Arg. To explore the antitumor activity of MIPP, the effect of MIPP on HeLa cell apoptosis and the underlying preventative mechanisms were investigated. Results showed that MIPP reduced the viability of HeLa cells in a concentration-dependent manner. TUNEL analysis and flow cytometric examination showed that MIPP decreased cell proliferation via a mitochondrial-dependent pathway, as manifested by downregulation of Bcl-2/Bax, promotion of the movement of cytochrome C from the mitochondria to the cytoplasm, and triggering of caspase-9 and caspase-3. Therefore, MIPP may be a promising tumor-preventive agent, especially in human cervical cancer.


Sign in / Sign up

Export Citation Format

Share Document