scholarly journals The Effects of Apigenin and Curcumin on Autophagy Related Cell Death and Apoptosis

Proceedings ◽  
2018 ◽  
Vol 2 (25) ◽  
pp. 1586
Author(s):  
Sera Kayacan ◽  
Kaan Yilancioglu ◽  
Ayse Seda Akdemir ◽  
Fatma Kaya Dagistanli ◽  
Gulay Melikoglu ◽  
...  

: Cervical cancer is one of the frequent types of cancer seen in females. It has been suggested that natural compounds can be used effectively for cancer treatment. Apoptosis and autophagy related cell death play important roles in suppression of tumorigenesis. Apigenin and curcumin are natural products isolated from plant extracts known to have antitumoral, antibacterial and antiviral effects. Varying doses of curcumin and apigenin were applied to HeLa cancer cell lines. The expression of the genes related to apoptosis and/or autophagy related cell death were measured using qRT-PCR and cell viability was measured using MTT assay. Our results showed that curcumin and apigenin are effective on apoptosis and autophagy related cell death in HeLa cells. We suggested that these natural products seem to be a new promising therapeutic approach in cancer.

Author(s):  
Muhammad Hasan Bashari ◽  
Eveline Yuniarti ◽  
Tenny Putri ◽  
Nurul Qomarilla ◽  
Dikdik Kurnia ◽  
...  

Breast cancer (BC) and cervical cancer (CC) have a high prevalence and mortality rate worldwide. Despite the availability of advanced treatment, resistance to conventional chemotherapies has emerged. Myrmecodia pendens, one of the species of Sarang Semut (local name), possess a potential of antitumor effects by inducing cell death different cancer cell entities. This study aimed to assess anti-tumor activities of n-hexane fraction of M. pendens in inhibiting cell survival and cell migration in BC and CC cells. M. pendens was extracted in methanol then fractionated using n-hexane or ethyl acetate. BC cells including MCF-7 (luminal A), HCC-1954 (HER2+) cells and CC Hela cells were treated with M. pendens extracts to evaluate cytotoxic activity using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay as well as anti-cell migration using scratch assay. We also analyzed inhibitory concentration 50 (IC50) of n-hexane fraction in BC and CC cells. We started with comparing cytotoxicity activities of methanol extract, ethyl acetate and n-hexane fractions of M. pendens. Data showed that the n-hexane fraction was the most potent inducing BC cell death. Therefore, we used the n-hexane fraction for further experiments. Interestingly, IC50 of this fraction in HCC-1954 and Hela cells were lower than in MCF-7 cells, 16; 13 and 60 ppm, respectively. Moreover, the low concentrations of n-hexane fraction inhibited HeLa cells migration, compared to control group (p<0.05). The n-hexane fraction of M. pendens shows promising anti-cancer agent, by inhibiting BC and CC cell survival as well as inhibiting CC cells migration.Keywords: breast cancer, cervical cancer, MTT assay, Sarang Semut, scratch assay


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4951
Author(s):  
Chau-Ha Pham ◽  
Joo-Eun Lee ◽  
Jinha Yu ◽  
Sung-Hoon Lee ◽  
Kyung-Rok Yu ◽  
...  

Recent studies found that short-chain fatty acids (SCFAs), which are produced through bacterial fermentation in the gastrointestinal tract, have oncoprotective effects against cervical cancer. The most common SCFAs that are well known include acetic acid, butyric acid, and propionic acid, among which propionic acid (PA) has been reported to induce apoptosis in HeLa cells. However, the mechanism in which SCFAs suppress HeLa cell viability remain poorly understood. Our study aims to provide a more detailed look into the mechanism of PA in HeLa cells. Flow cytometry analysis revealed that PA induces reactive oxygen species (ROS), leading to the dysfunction of the mitochondrial membrane. Moreover, PA inhibits NF-κB and AKT/mTOR signaling pathways and induces LC3B protein levels, resulting in autophagy. PA also increased the sub-G1 cell population that is characteristic of cell death. Therefore, the results of this study propose that PA inhibits HeLa cell viability through a mechanism mediated by the induction of autophagy. The study also suggests a new approach for cervical cancer therapeutics.


2021 ◽  
Vol 41 (3) ◽  
pp. 1271-1282
Author(s):  
SERA KAYACAN ◽  
KAAN YILANCIOGLU ◽  
AYSE SEDA AKDEMIR ◽  
FATMA KAYA-DAGISTANLI ◽  
GULAY MELIKOGLU ◽  
...  

2019 ◽  
Vol 31 (10) ◽  
pp. 2311-2318
Author(s):  
Ashok K. Singh ◽  
Snehlata Katheria ◽  
Amrendra Kumar ◽  
Asiff Zafri ◽  
Mohd. Arshad

Synthesis of [Ru(PPh3)2(BZM)2Cl2] (BZM= LS1, LS2, LS3, LS4 and LS5) where LS1=(1H-benzo[d] imidazole-2-yl)methanethiol, LS2 = 2-(4-bromobutyl)-1H-benzo[d] imidazole, LS3= 2-(4-nitrophenyl)-1H-benzo[d]imidazole, LS4 = 2-(4-chlorophenyl)-1H-benzo[d]imidazole and LS5= 4-(1H-benzo[d]imidazol-2-yl)aniline (BZM = benzimidazoles, PPh3 = triphenylphosphine) and metal complexes as MR, [ Ru (PPh3)4Cl2], MLS1, MLS2, MLS3, MLS4 and MLS5 for use as potential anticancer compounds have been investigated. The complexes have been characterized by elemental analysis, IR, multinuclear NMR, UV-visible and ESI-MS spectroscopic techniques. The geometries of all complexes have been optimized by using density functional theory (DFT). The cytotoxicity effects of MR, MLS2 and LS1 were also investigated on Human cervical carcinoma cells (HeLa) by MTT assay, ROS generation and nuclear apoptosis assay. The percent cell viability assessed by MTT assay suggested that the synthesized MR, MLS2 and LS1 significantly reduce the viability of HeLa cells, in a dose-dependent manner. The inhibitory concentration (IC50) of MR, MLS2 and LS1 against HeLa cells was found 90.8, 81.8 and 115 μM, respectively. These compounds also induced the over production of intracellular reactive oxygen species (ROS) as well as the condensed and fragmented nucleus, which supports the molecular mechanism of cell death by apoptosis. The investigations suggested that the compounds MR, MLS2 and LS1 induce the cell death in HeLa cells through apoptotic pathway.


2015 ◽  
Vol 16 (12) ◽  
pp. 14979-14996 ◽  
Author(s):  
Cui Zhang ◽  
Yingnan Jiang ◽  
Jin Zhang ◽  
Jian Huang ◽  
Jinhui Wang

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
P. A. S. R. Santos ◽  
G. B. Avanço ◽  
S. B. Nerilo ◽  
R. I. A. Marcelino ◽  
V. Janeiro ◽  
...  

The objective of this study was to evaluate the cytotoxic activity of rosemary (REO,Rosmarinus officinalisL.), turmeric (CEO,Curcuma longaL.), and ginger (GEO,Zingiber officinaleR.) essential oils in HeLa cells. Cytotoxicity tests were performedin vitro, using tetrazolium (MTT) and neutral red assays for evaluation of antiproliferative activity by different mechanisms, trypan blue assay to assess cell viability and evaluation of cell morphology for Giemsa to observe the cell damage, and Annexin V to evaluate cell death by apoptosis. CEO and GEO exhibited potent cytotoxic activity against HeLa cells. IC50obtained was 36.6 μg/mL for CEO and 129.9 μg/mL for GEO. The morphology of HeLa cells showed condensation of chromatin, loss of cell membrane integrity with protrusions (blebs), and cell content leakage for cells treated with CEO and GEO, from the lowest concentrations studied, 32.81 μg/mL of CEO and 32.12 μg/mL of GEO. The Annexin V assay revealed a profile of cell death by apoptosis for both CEO and GEO. The results indicate cytotoxic activityin vitrofor CEO and GEO, suggesting potential use as anticancer agents for cervical cancer cells.


2020 ◽  
Author(s):  
Ming WAN ◽  
Fu-min Zhang ◽  
Peng-cheng Kang ◽  
Xing-ming Jiang ◽  
yunfu cui

Abstract Background MicroRNAs (miRNAs) are abnormally expressed in human tumors, including cholangiocarcinoma (CCA). miR-27a-3p was observed up-regulated in CCA, but its functions in CCA are largely unknown.Methods CCK8 assay, Colony formation assays and Ki-67 staining was employed to detect the cell growth. The autophagy and proliferation relative-protein analyzed by western blot. The immunofluorescence staining was applied to analyze the expression level of LC3 I/II. Tumor xenografts was used to test the role of miR-27a-3p. Luciferase reporter assay, western bolt and qRT-PCR showed the relationship between miR-27a-3p and ING5.Results miR-27a-3p expression was increased in human CCA tissues. Inhibition of miR-27a-3p suppressed the proliferative capacity of CCA cells, silencing of miR-27a-3p dramatically induced cell death and suppressed tumor growth in vivo. The proteins, such as Beclin-1, p62, p21, p-p53, CDK4 and CDK6, were decreased upon miR-27a-3p inhibitor transfection. Western blot assay and immunofluorescence analysis were showed the induced-autophagy after transfecting with miR-27a-3p or inhibitor of growth family 5 (ING5) in RBE. ING5 as a direct miR-27a-3p target in CCA. Co-transfect of miR-27a-3p and ING5 can reverse CCA cell death which induced by miR-27a-3p inhibitor alone.Conclusions miR-27a-3p promotes oncogenesis of CCA by triggering autophagy-related cell death by interacting with ING5 directly.


2020 ◽  
Vol 19 (30) ◽  
pp. 2805-2813 ◽  
Author(s):  
Sajid Hussain ◽  
Farhat Ullah ◽  
Abdul Sadiq ◽  
Muhammad Ayaz ◽  
Azhar-ul-Haq Ali Shah ◽  
...  

Background: Liver cancer is a devastating cancer with increasing incidence and mortality rates worldwide. Plants possess numerous therapeutic properties, therefore the search for novel, naturally occurring cytotoxic compounds is urgently needed. Methods: The anticancer activity of plant extracts and isolated compounds from Anchusa arvensis (A. arvensis) were studied against the cell culture of HepG-2 (human hepatocellular carcinoma cell lines) using 3-(4,5-Dimethylthiazol-yl)-diphenyl tetrazoliumbromide (MTT) assay. Apoptosis was investigated by performing Acridine orange –ethidium bromide staining, styox green assay and DNA interaction study. We also used tools for computational chemistry studies of isolated compounds with the tyrosine kinase. Results: In MTT assay, the crude extract caused a significant cytotoxic effect with IC50 of 34.14 ± 0.9 μg/ml against HepG-2 cell lines. Upon fractionation, chloroform fraction (Aa.Chm) exhibited the highest antiproliferative activity with IC50 6.55 ± 1.2 μg/ml followed by ethyl acetate (Aa.Et) fraction (IC50, 24.59 ± 0.85 μg/ml) and n-hexane (Aa.Hex) fraction (IC50 29.53 ± 1.5μg/ml). However, the aqueous (Aa.Aq) fraction did not show any anti-proliferative activity. Bioactivity-guided isolation led to the isolation of two compounds which were characterized as para–methoxycatechol (1) and decane (2) through various spectroscopic techniques. Against HepG-2 cells, compound 1 showed marked potency with IC50 6.03 ± 0.75 μg/ml followed by 2 with IC50 18.52 ± 1.9 μg/ml. DMSO was used as a negative control and doxorubicin as a reference standard (IC50 1.3 ± 0.21 μg/ml). It was observed that compounds 1-2 caused apoptotic cell death evaluated by Acridine orange –ethidium bromide staining, styox green assay and DNA interaction study, therefore both compounds were tested for molecular docking studies against tyrosine kinase to support cytotoxic activity. Conclusion: This study revealed that the plant extracts and isolated compounds possess promising antiproliferative activity against HepG-2 cell lines via apoptotic cell death.


2016 ◽  
Vol 7 ◽  
Author(s):  
Nadiah Abu ◽  
Swee K. Yeap ◽  
Ahmad Z. Mat Pauzi ◽  
M. Nadeem Akhtar ◽  
Nur R. Zamberi ◽  
...  

2015 ◽  
Vol 10 (2) ◽  
pp. 423
Author(s):  
Arushdeep Sidana ◽  
Umar Farooq

<p>The present study was aimed at <em>in vitro</em> antileishmanial screening of ten plants used in the traditional medicine in India. MTT method was used to evaluate the cell death after application of 100, 250, 350 and 500 μg/mL of the methanolic extracts followed by incubation for 24 hours at 25°C. Methanolic leaf extracts of <em>Acorus calamus, Alstonia scholaris</em> and <em>Berberis aristata</em> showed significant antileishmanial activity at a concentration of 500 µg/ml. In order to identify the antileishmanial compounds present in the active extracts of the screened plants, an LC-MS analysis of the tested extracts was carried out. The active extracts revealed the presence of some natural products with known antileishmanial activity along with other compounds. The present study suggests that the active plant extracts may be processed to isolate the compounds that may further be screened for their antileishmanial potential.</p>


Sign in / Sign up

Export Citation Format

Share Document