Unfolded Protein Response is Involved in Trans-Platinum (II) Complex-Induced Apoptosis in Prostate Cancer Cells via ROS Accumulation

2019 ◽  
Vol 19 (9) ◽  
pp. 1184-1195
Author(s):  
Didem Karakas ◽  
Buse Cevatemre ◽  
Arzu Y. Oral ◽  
Veysel T. Yilmaz ◽  
Engin Ulukaya

Background:Prostate cancer is one of the most common cancer types and it is the sixth leading cause of cancer-related death in men worldwide. Even though novel treatment modalities have been developed, it still a lifethreatening disease. Therefore novel compounds are needed to improve the overall survival.Methods:In our study, it was aimed to evaluate the anti-cancer activity of newly synthesized Platinum (II) [Pt(II)] complex on DU145, LNCaP and PC-3 prostate cancer cell lines. The cytotoxic activity of Pt(II) complex was tested by SRB and ATP cell viability assays. To detect the mode of cell death; fluorescent staining, flow cytometry and western blot analyses were performed.Results:The Pt(II) complex treatment resulted in a decrease in cell viability and increasing levels of apoptotic markers (pyknotic nuclei, annexin-V, caspase 3/7 activity) and a decrease in mitochondrial membrane potential in a dose dependent manner. Among cell types, tested PC-3 cells were found to be more sensitive to Pt(II) complex, demonstrating elevation of DNA damage in this cell line. In addition, Pt(II) complex induced Endoplasmic Reticulum (ER) stress by triggering ROS generation. More importantly, pre-treatment with NAC alleviated Pt(II) complex-mediated ER stress and cell death in PC-3.Conclusion:These findings suggest an upstream role of ROS production in Pt(II) complex-induced ER stressmediated apoptotic cell death. Considering the ROS-mediated apoptosis inducing the effect of Pt(II) complex, it warrants further evaluation as a novel metal-containing anticancer drug candidate.

2016 ◽  
Vol 11 (4) ◽  
pp. 771
Author(s):  
Xian-De Cao ◽  
Hui-Min Zheng

<p class="Abstract">The aim of the present study was to investigate the role of zerumbone on the proliferation, cell cycle arrest and cell death in DU-145 prostate cancer cell lines. The MTT assay revealed that zerumbone (20 µM) reduced proliferation of DU-145 cells to 39.0% at 48 hours. It also increased the proportion of propidium iodide stained cells to 53.4% compared 1.0% in control. However, the population of annexin V-stained cells remained uneffected indicating induction of non-apoptotic cell death by zerumbone. Treatment of DU-145 cells with zerumbone (20 µM) caused 8-fold enhancement in the level of reactive oxygen species (ROS). On the other hand, exposure of the zerumbone treated DU-145 cells to glutathione inhibited the generation of ROS. Fow cytometry using propidium iodide staining revealed that zerumbone treat-ment increased proportion of cells in G1 phase to 71.3% on compared to 34.7% in the control. The results from Western blot analysis revealed a significant increase in the expression of cyclin D1 protein in DU-145 cells on treatment with 20 µM concentration of zerumbone. Thus, zerumbone treatment inhibits prostate cancer cell viability and can be used for its treatment.</p><p> </p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sachin Sharma ◽  
Shaikh Maryam Ghufran ◽  
Sampa Ghose ◽  
Subhrajit Biswas

AbstractThe activated hepatic stellate cells (HSCs) are the major cells that secrete the ECM proteins and drive the pathogenesis of fibrosis in chronic liver disease. Targeting of HSCs by modulating their activation and proliferation has emerged as a promising approach in the development of anti-fibrotic therapy. Sorafenib, a multi-kinase inhibitor has shown anti-fibrotic properties by inhibiting the survival and proliferation of HSCs. In present study we investigated sorafenib induced cytoplasmic vacuolation mediated decreased cell viability of HSCs in dose and time dependent manner. In this circumstance, sorafenib induces ROS and ER stress in HSCs without involvement of autophagic signals. The protein synthesis inhibitor cycloheximide treatment significantly decreased the sorafenib-induced cytoplasmic vacuolation with increasing cell viability. Antioxidant human serum albumin influences the viability of HSCs by reducing sorafenib induced vacuolation and cell death. However, neither caspase inhibitor Z-VAD-FMK nor autophagy inhibitor chloroquine could rescue the HSCs from sorafenib-induced cytoplasmic vacuolation and cell death. Using TEM and ER organelle tracker, we conclude that the cytoplasmic vacuoles are due to ER dilation. Sorafenib treatment induces calreticulin and GPR78, and activates IRE1α-XBP1s axis of UPR pathway, which eventually trigger the non-apoptotic cell death in HSCs. This study provides a notable mechanistic insight into the ER stress directed non-apoptotic cell death with future directions for the development of efficient anti-fibrotic therapeutic strategies.


2015 ◽  
Vol 10 (3) ◽  
pp. 500 ◽  
Author(s):  
Da Chen ◽  
Xiao-Yi Zhang ◽  
Fa-Zhu Zheng ◽  
Hai-Tao Wang ◽  
Jian-Liang Cai ◽  
...  

<p>Escopoletin, a phenolic compound belonging to anthocyanin family shows promising antioxidant activities. In the present study, anti-cancer effects of escopoletin treatment in DU145 cells were investigated. The sulphorhodamine-B staining and annexin V and propidium iodide were respectively used for the analysis of cell viability and death. The results revealed a significantly higher cytotoxicity by escopoletin that caused cell death in DU145 cells. Escopoletin treatment in DU145 cells markedly inhibited cell growth through non-apoptotic cell death and induced significant reactive oxygen species (ROS) production. It also induced G1 cell cycle arrest and cyclin D1 accumulation through the enhanced expression of p21. However, the effect of escopoletin on DU145 cells was reversed by pretreatment with glutathione antioxidant. This suggests that escopoletin induced generation of ROS is responsible for the increased cytotoxicity in DU145 cells. Thus, escopoletin exhibits potential therapeutic efficacy for the treatment of prostate cancer.</p><p> </p>


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1360-1360
Author(s):  
Jieun Jang ◽  
Ju-In Eom ◽  
Hoi-kyung Jeung ◽  
So-Young Seol ◽  
Haerim Chung ◽  
...  

Abstract Background: Histone methyltransferase (HMTase) G9a regulates the transcription of multiple genes by primarily catalyzing dimethylation of histone H3 lysine 9 (H3K9me2), as well as several non-histone lysine sites. Recently, pharmacological and genetic targeting of the G9a was shown to be efficient in slowing down acute myeloid leukemia (AML) cell proliferation in a mouse model and human AML cell lines thus making this HMTase potential target for epigenetic therapy of AML. Activation of adaptive mechanisms to drug plays a crucial role in drug resistance and relapse by allowing cell survival under stressful conditions. Therefore, inhibition of the adaptive response is considered as a prospective therapeutic strategy. The tolerance mechanism to HMTase regulation in leukemia cell is unclear yet. The PERK-eIF2α phosphorylation pathway is an important arm of the unfolded protein response (UPR), which is induced under conditions of endoplasmic reticulum (ER) stress. Recent previous studies showed that pro-survival ER stress is induced in cancer cells and contributes to development of drug resistance. Methods: We investigated the levels of apoptosis and ER stress by G9a inhibitor BIX-01294 in leukemia cell lines. U937, cytarabine-resistant U937 (U937/AR) and KG1 were used. U937/AR cell line was established in our laboratory by exposing parental U937 cells to stepwise increasing concentrations of cytarabine. Results: We initially examined the expression of G9a in leukemia cell lines and the primary AML cells obtained from a patient at the different time point. In U937/AR cells and primary AML cells obtained at relapse, G9a expression was increased compare to that in U937 cells and primary AML cells obtained at diagnosis, respectively. G9a expression was also increased in KG1 cells. In both of U937 and U937/AR, apoptotic cell death was induced by BIX-01294 in a dose-dependent manner. In contrast, apoptotic cell death was minimal in KG1 cells which are enriched in cells expressing a leukemia stem cell phenotype (CD34+CD38-). To address the activation of ER stress response by BIX-01294 in leukemia cells, we examined the effect of BIX-01294 treatment on PERK and eIF2α protein expression and phosphorylation levels. We found that treatment of U937, U937/AR, KG1 cells with 3μM of BIX-01294 for 24h caused an upregulation of phosphorylated PERK and eIF2α. The upregulation of PERK phosphorylation was associated with a decrease in PERK protein levels after treatment. To further address the role of the PERK-eIF2α phosphorylation in BIX-01294 sensitivity, we examined whether PERK inhibition using small interfering RNA (siRNA) or specific inhibitor could sensitize cells to BIX-01294-mediated death. The siRNA against PERK effectively inhibited BIX-01294-mediated phosphorylation of PERK and eIF2α in U937 and U937/AR cells. The addition of PERK siRNA led to a significant increase in the extent of BIX-01294-induced apoptotic cell death in U937 (P = 0.0003) and U937/AR (P < 0.0001) as compared with that of BIX-01294 treatment alone. PERK inhibitor GSK260641 significantly increased BIX-01294-induced apoptotic cell death in U937 (P < 0.0001) and U937/AR (P = 0.006) cells. To our surprise, addition of PERK siRNA or GSK260641 increased the sensitivity of KG1 cells to BIX-01294-mediated death in a dose-dependent manner (P = 0.0003 for siRNA, P = 0.0053 for GSK260641). Conclusion: These data demonstrated that PERK-eIF2α activation has a pro-survival function to G9a inhibitor in leukemia cells and mediates resistance of AML stem cells to G9a inhibitor treatment. The PERK-eIF2α phosphorylation arm may represent a suitable target for combating resistance to G9a inhibitor in AML. The mechanisms underlying the increased sensitivity of AML cells with PERK inhibition to G9a inhibitor are unclear at present and are needed to define in further studies. Disclosures No relevant conflicts of interest to declare.


2001 ◽  
Vol 71 (3) ◽  
pp. 69-78
Author(s):  
Mihaela Buleandra ◽  
Zenovia Moldovan ◽  
Irinel Adriana Badea ◽  
Iulia Gabriela David ◽  
Dana Elena Popa ◽  
...  

Millefolii herba is an available product on the Romanian market as mixture of stems, leaves and flowers of Achillea millefolium L. There were established its volatile compounds profile, total polyphenolic content (TPC), antioxidant capacity and effects on HCT 116 cell viability and programmed cell death. The infusion, hydroalcoholic extract and hydrodistillated essential oil were studied. A comparative analysis using static headspace (HS) and hydro-distillation (HD) GC/MS of the volatile components from Millefolii herba was realized: the essential oil contains chamazulene as the principal component (37.1%), while 1,8-cineole (46.8%) is the main constituent of headspace volatiles. The highest antioxidant capacity was found in essential oil, compared with hydroalcoholic extract, infusion and ascorbic acid. Yarrow hydroalcoholic extract reduced the HCT 116 cell viability and induced the apoptotic cell death in a dose and time dependent manner.


2018 ◽  
Vol 4 (Supplement 2) ◽  
pp. 193s-193s
Author(s):  
S. Sharma ◽  
S. Yadav ◽  
S. Rana ◽  
P. Avti ◽  
K.L. Khanduja

Background and aim: One of the active combustion product of cigarette smoke, Benzo[a]pyrenes, role in pulmonary cancer is clearly understood. However, its role in gastrointestinal cancer including colon cancer is not clearly understood. Methods: In this study, benzo(a)pyrenes was treated to colon cells to evaluate its role in cell viability, cellular ROS, and gene expression of various PLA2 isoforms was evaluated by FACS and PCR. The identified PLA2 was silenced at the gene level to evaluate its role in cell viability and ROS generation. Results: B(a)P treatment at 1 µg/mL for 48 h to HCT-15 male colon cells significantly reduced the cell viability without affecting HT-29 female colon cells. Higher doses and longer treatment duration with B(a)P showed that female colon cells were highly sensitive than male colon cells. Annexin-V/PI staining for preapoptotic detection showed that B(a)P treatment increased the apoptosis in both the cell types in a concentration and time-dependent manner. The cytosolic ROS (cROS) and superoxide radical (SOR) formation in the female colon cells was significantly higher than male colon cells unlike the mitochondrial ROS (mtROS) production which was significantly higher in male colon cells. Treatment with B(a)P significantly upregulated the IID and IVA PLA2 isoform groups in HCT-15 male colon cells, whereas IB was upregulated in HT-29 female colon cells among the various PLA2 isozyme gene studied (IB, IID, III, IVA, IVB, IVC, VI, X, aiPLA2 and iPLA2). Gene silencing experiments targeting PLA2 IID and IVA in the HCT-15 male colon cells and IB in HT-29 female colon cells showed no effect with B(a)P treatment on the cell proliferation, apoptosis, membrane integrity and free radicals (ROS, mtROS, and SOR) generation. Conclusion: Targeting specific PLA2 isozymes in a cell-specific manner abolished the B(a)P-induced PLA2-mediated oxidative damage–related signaling pathways.


2018 ◽  
Author(s):  
Hadhemi Kaddour ◽  
Yosra Hamdi ◽  
David Vaudry ◽  
Jérôme Leprince ◽  
Hubert Vaudry ◽  
...  

AbstractOxidative stress, associated with various neurodegenerative diseases, induces imbalance in ROS generation, impairs cellular antioxidant defences and finally triggers both neurons and astroglial cell death by apoptosis. Astrocytes specifically synthesize and release endozepines, a family of regulatory peptides, including the octadecaneuropeptide (ODN). We have previously reported that ODN is a potent neuroprotective agent that prevents 6-OHDA-induced apoptotic neuronal death. The purpose of the present study was to investigate the potential glioprotective effect of ODN on 6-OHDA-induced oxidative stress and cell death in cultured rat astrocytes. Incubation of astrocytes with graded concentrations of ODN (10−14 to 10−8 M) inhibited 6-OHDA-evoked cell death in a concentration- and time-dependent manner. In addition, ODN prevented the decrease of mitochondrial activity and caspase-3 activation induced by 6-OHDA. Toxin-treated cells exhibited high level of ROS associated with a generation of H2O2 and O2°-and a reduction of both SOD and catalase activities. Co-treatment of astrocytes with low concentrations of ODN dose dependently blocked 6-OHDA-evoked ROS production and inhibition of antioxidant enzymes activities. Taken together, these data demonstrate that ODN is a potent glioprotective agent that prevents 6-OHDA-induced oxidative stress and apoptotic cell death. ODN is thus a potential candidate to delay neuronal damages in various pathological conditions involving oxidative neurodegeneration.


2019 ◽  
Vol 128 (6_suppl) ◽  
pp. 117S-124S ◽  
Author(s):  
Channy Park ◽  
Hyewon Lim ◽  
Sung K. Moon ◽  
Raekil Park

Objectives: Auditory neuropathy due to toxicity mechanism of pyridoxine has not yet been fully documented. Therefore, the present study explored a direct mechanism underlying the effects of pyridoxine on auditory neuropathy in organ of Corti (OC) explants ex vivo and cochlear neuroblast cell line, VOT-33 in vitro. Methods: Primary OC explants containing spiral ganglion neurons and cultured VOT-33 cells were treated with pyridoxine. Results: In nerve fiber of primary OC explants, pyridoxine decreased staining for NF200, a neuro-cytoskeletal protein. We also found that pyridoxine-induced VOT-33 apoptosis, as indicated by accumulation of the sub-G0/G1 fraction, caspase-3 activation, and PARP cleavage. In addition, pyridoxine induced reactive oxygen species (ROS) generation and alteration of mitochondrial membrane potential transition (MPT), including Bcl-2 family protein expression and consequently Ca2+ accumulation and changes of endoplasmic reticulum (ER) stress-related protein expression such as phospho-PERK, caspase-12, Grp78, and CHOP. Conclusion: Pyridoxine preferentially induced severe cell death on nerve fiber in primary OC explants and markedly increased apoptotic cell death via mitochondria-mediated ER stress in VOT-33 cells.


2019 ◽  
Vol 18 (10) ◽  
pp. 1386-1393 ◽  
Author(s):  
Tereza C.C. Silva ◽  
Giselle P. de Faria Lopes ◽  
Noélio de J. Menezes-Filho ◽  
Diêgo M. de Oliveira ◽  
Ezequiel Pereira ◽  
...  

Background: A glioblastoma is a primary CNS tumor that is more aggressive and lethal than other brain tumors. Its location, rapid proliferation, invasive growth, angiogenesis and immunosuppression are the main factors that limit its treatment, making it a major challenge to neuro-oncology. Objective: This study investigated the in vitro effects of the alkaloid dihydrochelerythrine (DHC), which is extracted from Zanthoxylum stelligerum, on the viability, proliferation, cell death and β-catenin, NFκB, STAT3/pSTAT3 and interleukins roles. Method: In vitro experimental models of human (U251 and GL-15) and murine (C6) glioblastoma cells were cultured in the presence of DHC at increasing concentrations for MTT assay and exclusion trypan blue dye to determine EC50. Afterward, C6 and U251 cells were treated with 100 µM DHC or DMSO 0.1% for cell cycle, annexin and expression of β-catenin/NFκB/STAT3/pSTAT3 by flow cytometry or immunofluorescence. Interleukin quantification was made by Cytometric Bead Array. Results: A significant decrease was observed in C6 and U251 cell viability in a time and dose-dependent manner. GL-15 cell viability decreased only when treated with 200 µM DHC. This maximum concentration affected neither astrocytes nor microglia viability. A cytostatic effect of DHC was observed in C6 and U251 cells after 48 h of 100 µM DHC treatment. After 72 h of DHC treatment, C6 presented 80% of annexin-V+ cells compared to 10% of annexin-V+ U251 cells. C6 cells demonstrated significant high levels of NFκ B and β-catenin cytoplasmic fraction. Additionally, DHC treatment resulted in higher significant levels of IL-6 than did other interleukins and STAT3 up-regulation in U251 cells. Conclusion: These results demonstrate that DHC acts as a chemosensitizing agent selective for glioma cells not affecting non-tumor cells. Considering tumor heterogeneity, DHC demonstrated an anti-cancer potential to activate different cell death pathways. DHC demonstrated could be used for chemotherapy and immunotherapy applications in glioblastomas in the future.


2018 ◽  
Vol 115 (12) ◽  
pp. E2762-E2771 ◽  
Author(s):  
Yanfang Wu ◽  
Xia Li ◽  
Junying Jia ◽  
Yanpeng Zhang ◽  
Jing Li ◽  
...  

The accumulation of misfolded proteins in the endoplasmic reticulum (ER) causes ER stress and triggers the unfolded protein response (UPR). Failure to resolve ER stress leads to apoptotic cell death via a yet unclear mechanism. Here, we show that RNF183, a membrane-spanning RING finger protein, localizes to the ER and exhibits classic E3 ligase activities. Sustained ER stress induced by different treatments increases RNF183 protein levels posttranscriptionally in an IRE1α-dependent manner. Activated IRE1 reduces the level of miR-7, which increases the stability of RNF183 transcripts. In addition, overexpression of RNF183 leads to increased apoptosis and its depletion alleviates ER stress-induced apoptosis. Furthermore, RNF183 interacts with Bcl-xL, an antiapoptotic member of the Bcl-2 family, and polyubiquitinates Bcl-xL for degradation. Thus, RNF183 plays an important role in executing programmed cell death upon prolonged ER stress, likely by inducing apoptosis through Bcl-xL.


Sign in / Sign up

Export Citation Format

Share Document