scholarly journals Anti-Corrosive Behaviour of Saccharum officinarum Extract in 15% HCl for Stainless Steel-410 Surface

2021 ◽  
Vol 33 (6) ◽  
pp. 1389-1395
Author(s):  
Nishant Bhardwaj ◽  
Pooja Sharma ◽  
Vineet Kumar

The objective of this study is to experimentally evaluate the inhibition properties of Saccharum officinarum extract in a 15% hydrochloric acidic media for stainless steel (SS-410). The gravimetric, UV spectroscopy, FTIR and surface morphological studies carried out using SEM, AFM and XRD revealed that the S. officinarum extract protected the SS 410 steel in 15% hydrochloric acidic medium. Gravimetric analysis revealed maximum 95.92 % inhibition efficiency at 4 g/L inhibitor concentration. The computational studies (quantum chemical calculations) were further utilized to understand the concept of chelation mechanism. The surface film formation and other 3D features of S. officinarum extract film over SS-410 surface was confirmed using AFM studies. Adsorption of S. officinarum extract over SS-410 surface followed Langmuir adsorption isotherm. It is clear from the theoretical and computational studies that the S. officinarum extract acted as mixed type inhibitor by adsorption of hybrid organic-inorganic inhibitor ingredients on SS-410. Thus, S. officinarum extract can develop an efficient protective layer on SS-410 that has various industrial applications.

2017 ◽  
Vol 380 ◽  
pp. 141-150
Author(s):  
Jordan Graham ◽  
Savko Malinov ◽  
Roy Douglas ◽  
Rose Mary Stalker

Stainless steels can form a protective oxide layer when exposed to a high temperature oxidising environment, this protective layer forms a diffusion barrier and slows the oxidation of the alloys in harsh environments. This characteristic has made stainless steels one of the most commonly used alloys for high temperature industrial applications. In this work, a systematic testing procedure has been used to investigate the high temperature oxidation of two commonly used grades of stainless steel, 316 and 310. Samples of each alloy have undergone isothermal testing in air at 1050°C, 1150°C and 1250°C for a range of time periods up to 8h. The oxidation kinetics were also investigated using thermo-gravimetric analysis in air at the same temperatures for 8h. The oxide layers formed on the samples were characterised using X-Ray diffraction, Scanning electron microscopy and energy dispersive spectroscopy. Information derived from oxide layer characterisation was used to explain any differences between the two alloys in terms of oxidation rate and overall alloy performance in the high temperature environment.


Author(s):  
Hiroyoshi Tanaka ◽  
Yoshinori Sawae ◽  
Joichi Sugimura

This paper describes a study on surface film formation and hydrogen permeation at stainless steel surfaces under high pressure hydrogen. In order to investigate hydrogen permeation into the steels, exposure tests in high pressure hydrogen were conducted with AISI 316 and 316L stainless steel specimens. To determine the concentration of hydrogen in the specimens and characteristics of surface oxide layer, desorption spectra of hydrogen and water were determined with TDS. In addition, XPS analyses were performed to identify chemical composition of the exposed surfaces. It was found that the permeation of hydrogen through the steel surface was related to the desorption behavior of water, which could be originated from the surface film formed during the exposure to high pressure gas.


Author(s):  
Andrey Moroz ◽  
Nikolay Sushentsov ◽  
Sergey Stepanov ◽  
Elena Mikheeva ◽  
Elena Ryzhova

2019 ◽  
Author(s):  
James Ewen ◽  
Carlos Ayestaran Latorre ◽  
Arash Khajeh ◽  
Joshua Moore ◽  
Joseph Remias ◽  
...  

<p>Phosphate esters have a wide range of industrial applications, for example in tribology where they are used as vapour phase lubricants and antiwear additives. To rationally design phosphate esters with improved tribological performance, an atomic-level understanding of their film formation mechanisms is required. One important aspect is the thermal decomposition of phosphate esters on steel surfaces, since this initiates film formation. In this study, ReaxFF molecular dynamics simulations are used to study the thermal decomposition of phosphate esters with different substituents on several ferrous surfaces. On Fe<sub>3</sub>O<sub>4</sub>(001) and α-Fe(110), chemisorption interactions between the phosphate esters and the surfaces occur even at room temperature, and the number of molecule-surface bonds increases as the temperature is increased from 300 to 1000 K. Conversely, on hydroxylated, amorphous Fe<sub>3</sub>O<sub>4</sub>, most of the molecules are physisorbed, even at high temperature. Thermal decomposition rates were much higher on Fe<sub>3</sub>O<sub>4</sub>(001) and particularly α-Fe(110) compared to hydroxylated, amorphous Fe<sub>3</sub>O<sub>4</sub>. This suggests that water passivates ferrous surfaces and inhibits phosphate ester chemisorption, decomposition, and ultimately film formation. On Fe<sub>3</sub>O<sub>4</sub>(001), thermal decomposition proceeds mainly through C-O cleavage (to form surface alkyl and aryl groups) and C-H cleavage (to form surface hydroxyls). The onset temperature for C-O cleavage on Fe<sub>3</sub>O<sub>4</sub>(001) increases in the order: tertiary alkyl < secondary alkyl < primary linear alkyl ≈ primary branched alkyl < aryl. This order is in agreement with experimental observations for the thermal stability of antiwear additives with similar substituents. The results highlight surface and substituent effects on the thermal decomposition of phosphate esters which should be helpful for the design of new molecules with improved performance.</p>


Mycobiology ◽  
2019 ◽  
Vol 47 (2) ◽  
pp. 250-255
Author(s):  
Jeong Hyun Yun ◽  
Jae Ho Kim ◽  
Jang-Eun Lee

Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 571
Author(s):  
Aurelia Elena Tudose ◽  
Ioana Demetrescu ◽  
Florentina Golgovici ◽  
Manuela Fulger

The aim of this work was to study the corrosion behavior of a Fe-Cr-Ni alloy (310 H stainless steel) in water at a supercritical temperature of 550 °C and a pressure of 250 atm for up to 2160 h. At supercritical temperature, water is a highly aggressive environment, and the corrosion of structural materials used in a supercritical water-cooled nuclear reactor (SCWR) is a critical problem. Selecting proper candidate materials is one key issue for the development of SCWRs. After exposure to deaerated supercritical water, the oxides formed on the 310 H SS surface were characterized using a gravimetric analysis, a metallographic analysis, and electrochemical methods. Gravimetric analysis showed that, due to oxidation, all the tested samples gained weight, and oxidation of 310H stainless steel at 550 °C follows parabolic rate, indicating that it is driven by a diffusion process. The data obtained by microscopic metallography concord with those obtained by gravimetric analysis and show that the oxides layer has a growing tendency in time. At the same time, the results obtained by electrochemical impedance spectroscopy (EIS) measurements indicate the best corrosion resistance of Cr, and (Fe, Mn) Cr2O4 oxides developed on the samples surface after 2160 h of oxidation. Based on the results obtained, a strong correlation between gravimetric analysis, metallographic analysis, and electrochemical methods was found.


2011 ◽  
Vol 31 (2-3) ◽  
Author(s):  
Sakvai Mohammed Safiullah ◽  
Deivasigamani Thirumoolan ◽  
Kottur Anver Basha ◽  
K. Mani Govindaraju ◽  
Dhanraj Gopi ◽  
...  

Abstract The synthesis of copolymers from different feed ratios of N-(p-bromophenyl)-2- methacrylamide (PBPMA) and glycidyl methacrylate (GMA) was achieved by using free radical solution polymerization technique and characterized using FT-IR, 1H and 13C NMR spectroscopy. The thermal stability of the synthesized copolymers was studied using thermo-gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The molecular weight of the copolymer is determined by gel permeation chromatography (GPC). The corrosion performances of low nickel stainless steel specimens dip coated with different composition of copolymers were investigated in 0.5 M H2SO4 using potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) techniques. The polarization and impedance measurements showed different corrosion protection efficiency with change in composition of the copolymers. It was found that the corrosion protection properties are owing to the barrier effect of the polymer layer covered on the low nickel stainless steel surfaces. However, it is observed that the mole ratio of PBPMA and GMA plays a major role in the protective nature of the copolymer.


2019 ◽  
Vol 41 (3) ◽  
pp. 388-388
Author(s):  
Khalid Saeed Khalid Saeed ◽  
Tariq Shah and Ahmad Hassan Tariq Shah and Ahmad Hassan

Effect of graphene nanoplates (GNPs) on the properties of Nylon 6,6 (Nyl 6,6) is investigated in present study. The morphological studies presented that the GNPs were dispersed inside the Nyl 6,6 matrix. The thermo gravimetric analysis (TGA) illustrated that the thermal degradation of nanocomposites samples were started at the range of 350-393 oC, which was appreciably higher than neat Nyl 6,6 (360 oC). The differential scanning calorimetry (DSC) analyses revealed that the crystallization temperature (Tc) of GNPs/Nyl 6,6 increased as increased the addition of GNPs, which might be due to the nucleation effect of GNPs. The mechanical properties of Nyl 6,6 was enhanced by incorporation of GNPs upto the addition of an optimal quantity of filler (5%wt GNPs) into the polymer matrix. The stress yield and Young’s modulus of 5%wt GNPs/Nyl 6,6 was 96.79 and 1.54, N/nm2, respectively. Both Nyl 6,6 and nanocomposites samples were also used for the adsorption of Neutral red chloride (NRC) dye, which significantly remove the dye from the aqueous solution. The neat nylon 6,6 and GNPs (5 and 10 wt%)/Nyl 6,6 adsorbed about 88.49, 93.15, and 93.60% within 2 h, respectively.


Sign in / Sign up

Export Citation Format

Share Document