scholarly journals Impact of Aluminium on ZnO Thin Films for Antimicrobial Activity

2021 ◽  
Vol 33 (10) ◽  
pp. 2393-2399
Author(s):  
BA. Anandh ◽  
R. Sakthivel ◽  
A. Shankar Ganesh ◽  
S. Subramani ◽  
A.T. Rajamanickam

Thin films of pure zinc oxide (ZnO) and aluminium (Al) doped ZnO were deposited by two step SILAR technique. Pure and Al (1%, 3%, 5%) doped ZnO thin film’s structural, morphology and optical properties were analyzed. Diffraction peaks of all the samples were indexed to hexagonal Wurtizite structure. The crystallite size, lattice parameters, dislocation density and microstrain were calculated for the prepared thin films. Morphology study using FESEM shows spherical shaped structure of pure ZnO and hexagonal faced rod like structure for Al doped ZnO thin films. The UV-vis absorption spectrum for the thin films was also studied. There is decrease in bandgap as the Al doping ratio increases from 1% to 5%. Photoluminescence studies confirmed that oxygen ion vacancy and interstitial Zn+ ion were present. The maximum zone of inhibition was studied against the Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria by agar diffusion method. Significant antimicrobial results were seen in pure and Al doped ZnO. Aluminium doped ZnO shows more antimicrobial activity over pure ZnO.

2021 ◽  
Author(s):  
BA ANANDH ◽  
R SAKTHIVEL ◽  
A SHANKAR GANESH ◽  
S SUBRAMANI ◽  
A T RAJAMANICKAM

Abstract Thin films of pure Zinc Oxide (ZnO) and Aluminium (Al) doped ZnO were deposited by two step SILAR technique. Pure and Al (1%, 3%, 5%) doped ZnO thin film’s structural, morphology and optical properties were analyzed. Diffraction peaks of the all the samples were indexed to hexagonal wurtizite structure. The crystallite size, lattice parameters, dislocation density and microstrain were calculated for the prepared thin films. Morphology study using FESEM shows spherical shaped structure of pure ZnO and hexagonal faced rod like structure for Al doped ZnO thin films.T he UV-Vis absorption spectrum for the thin films was also studied. There is decrease in bandgap as the Al doping ratio increases from 1–5%. Photoluminescence (PL) studies confirm that oxygen ion vacancy and interstitial Zn+ ion were present. The maximum zone of inhibition was studied against the bacteria’s the Gram-negative (E.coli) and Gram-positive (S.aureus) by Agar diffusion method. Significant antibacterial result was seen in pure and Al doped ZnO. Al doped ZnO shows more antibacterial activity over pure ZnO. All the samples give considerable antifungal activity which was done against Aspergillusniger. .


2020 ◽  
Vol 307 ◽  
pp. 217-222 ◽  
Author(s):  
Maishara Syazrinni Rooshde ◽  
Wan Rafizah Wan Abdullah ◽  
Amie Zaidah Amran ◽  
Noradhiha Farahin Ibrahim ◽  
Fazilah Ariffin ◽  
...  

Biofouling and biofilms exist as ubiquitous, undesirable accumulation of flora and fauna upon a given substrate when being immersed into an aquatic medium. Therefore, a novel antifouling based materials with the incorporation of nanotechnology has been developed for the prevention of biofouling in its initial stage through photocatalytic treatment. This study investigated the antimicrobial properties of photoactive Cerium (Ce) doped ZnO powder and explores its potential properties for future antifouling application. ZnO nanoparticles was doped with 0.4 mol% Ce was synthesized through the combination of modified citrate gelation technique and solid state sintering. The successful preparation of Ce doped ZnO was confirmed by XRD and SEM. The antimicrobial activity of Ce doped ZnO against E. coli and S. aureus was determined through antibacterial susceptibility test by agar well diffusion method whilst its photocatalytic inactivation efficiency against selected bacteria was analysed through photodegradation testing under UV light irradiation. The findings demonstrated that the synthesized Ce doped ZnO powder exhibited antibacterial effect against Gram-positive bacteria (S. aureus) and excellent photocatalytic efficiency to inactivate both Gram-negative (E. coli) and Gram-positive (S. aureus). 2 g/L of Ce doped ZnO catalyzed the 100% disinfection of both bacteria in 180 min of UV light exposure. Thus, this proved that Ce doped ZnO powder has the potential as efficient antifouling agent.


2019 ◽  
Vol 26 (05) ◽  
pp. 1850197 ◽  
Author(s):  
SELMA M. H. AL-JAWAD ◽  
SABAH H. SABEEH ◽  
ALI A. TAHA ◽  
HUSSEIN A. JASSIM

Pure and Fe-doped zinc oxide (ZnO) sol–gel thin films were deposited by spin-coating process. Pure ZnO and Fe–ZnO films, containing Fe of 2–8[Formula: see text]wt.%, were annealed at 500∘C for 2[Formula: see text]h. All prepared thin films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and UV–visible (UV–vis) spectroscopy. XRD studies show the polycrystalline nature with hexagonal wurtzite structure of pure ZnO and Fe–ZnO thin films. The crystallite size of the prepared samples reduced with increasing Fe doping concentrations. AFM and SEM results indicated that the average grain size decreased as Fe doping concentration increased. The transmittance spectra were then recorded at wavelengths ranging from 300[Formula: see text]nm to 1000[Formula: see text]nm. The films produced yielded high transmission at visible regions. The optical bandgap energy of spin-coated films also decreased as Fe doping concentration increased. In particular, their optical bandgap energies were 3.75, 3.6, 3.5, 3.45 and 3.3 eV at 0-, 2-, 4-, 6- and 8-wt.% Fe concentrations, respectively. Antibacterial activities of pure ZnO and Fe–ZnO against E. coli and S. aureus were evaluated by international recognized test (JIS Z 2801). The results showed that pure and Fe-doped ZnO thin films have antibacterial inhibition zone against E. coli and S. aureus. Gram-positive bacteria seemed be more resistant to pure and Fe-doped ZnO thin films than gram-negative bacteria. The test shows an incremental increase in antibacterial activity of the thin films when dopant ratio increased under UV light.


2010 ◽  
Vol 25 (7) ◽  
pp. 711-716 ◽  
Author(s):  
Xue-Tao WANG ◽  
Li-Ping ZHU ◽  
Zhi-Gao YE ◽  
Zhi-Zhen YE ◽  
Bing-Hui ZHAO

2010 ◽  
Vol 157 (2) ◽  
pp. J13 ◽  
Author(s):  
Naoki Yamamoto ◽  
Hisao Makino ◽  
Takahiro Yamada ◽  
Yoshinori Hirashima ◽  
Hiroaki Iwaoka ◽  
...  

2017 ◽  
Vol 4 (5) ◽  
pp. 6311-6316 ◽  
Author(s):  
Pongladda Panyajirawut ◽  
Nattha Pratumsuwan ◽  
Kornkamon Meesombad ◽  
Kridsana Thanawattana ◽  
Artit Chingsungnoen ◽  
...  

2011 ◽  
Author(s):  
Lukman Nulhakim ◽  
Ahmad Nuruddin ◽  
Brian Yuliarto ◽  
Ferry Iskandar ◽  
Mikrajuddin Abdullah
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document