scholarly journals Antioxidant and Catalytic Activity of Biosynthesized NiO Nanoparticles using Terminalia chebula Fruit Extract

2021 ◽  
Vol 34 (1) ◽  
pp. 35-41
Author(s):  
Md. Moulana Kareem ◽  
G. Vijaya Lakshmi

Nowadays, the biological synthesis of nanoparticles attains researchers’ interest in removing hazardous pollutants from water. Due to eco-friendliness, cost effective, non-hazardous and avoids the usage of catalyst and stabilizing agents. Herein, biosynthesized NiO nanoparticles were prepared at the ambient conditions by using aqueous Terminalia chebula fruit extract. Terminalia chebula fruit extract contains polyphenolic compounds, terpenoids, carbohydrates and flavonoids, which can be responsible for the nucleation of metal nanoparticles in biological synthesis. The resulted biosynthesized NiO nanoparticles was characterized via UV, FTIR, zeta potential, XRD, EDX, SEM and TEM. The UV and XRD analysis confirmed the formation and cubic crystalline nature of biosynthesized NiO nanoparticles, receptively. FTIR, EDX and zeta potential confirmed the functional groups, elemental composition and surface charge. The phytochemicals present in Terminalia chebula were responsible for the reduction and stabilization of biosynthesized NiO nanoparticles. The average size of biosynthesized NiO was found to be 14.08 nm and spherical in shape with TEM. In addition, antioxidant and catalytic activities performance of the NiO nanoparticles were also investigated. Biosynthesized NiO nanoparticles showed antioxidant and catalytic activity against DPPH and Congo red dye, overall, the experimental results suggested that the NiO nanoparticle could be helpful for the industrial applications.

2020 ◽  
Vol 1 (01) ◽  
pp. 7-11
Author(s):  
Dr. Hawraa Natiq Kabroot Al-Fatlawy ◽  
Khwla Abd Al Kadhem Rahi ◽  
Diaa Sarhan Abd Al Zahra ◽  
Samara Rahem Hudud ◽  
Hussein Ali Hussein ◽  
...  

Nanotechnology is a multidisciplinary field that evolved within the past few decades and played a substantial role in the environment, industry, agriculture, and pharmacology. Nanoparticles are generally classified based on their dimensionality, morphology, composition, uniformity, and agglomeration. The shape, and morphology of nanoparticles play an essential role in their functionality and toxic effect on the environment and humans. In this review, we discuss the biosynthesis of nanoparticles from microbes. For the biological synthesis of nanoparticles, microbes have been exploited all over the globe. Microbes like bacteria, fungi, and yeasts are mostly preferred for nanoparticles (NPs) synthesis because of their fast growth rate, easy cultivation, and their ability to grow at ambient conditions of temperature, pH, and pressure. Applications of Nanoparticles is a field of research with tremendous prospects for the improvement of the diagnosis and treatment of human diseases. Microbial nanoparticles are found to have vigorous antibacterial activities. The nanoparticles' efficiency is probably due to their larger surface area for enhanced interaction with the micro-organisms. Nanoparticles adhere to the cell membrane and further penetrate inside by interacting with DNA, thereby interfering with the replication process or may attack the respiratory chain of pathogens. A similar bactericidal mechanism of silver nanoparticles obtained from endophytic bacterium Bacillus cereus was observed against pathogenic bacteria like Salmonella typhi, Escherichia coli, Klebsiella pneumonia, Staphylococcus aureus, and Pseudomonas aeruginosa.


2020 ◽  
Vol 16 (2) ◽  
pp. 214-225
Author(s):  
Khairiza Lubis ◽  
Nuannoi Chudapongse ◽  
Hau Van Doan ◽  
Oratai Weeranantanapan

Background: Based on various distinguished physical and chemical properties of gold nanoparticles, they have far wide applications in several areas of industry and medicine, such as catalysis, bio-sensor and drug delivery. Compared to a chemical method, biological synthesis is an economical and less toxic process, thus it is a better alternative for nanoparticle synthesis. In this study, an environmentally friendly method was chosen to produce AuNPs using Curcuma xanthorrhiza. Methods: Alkaline aqueous extract of C. xanthorrhiza rhizomes, which acts as a reducing and stabilizing agent was used to produce AuNPs by bio-reduction of HAuCl4. The formation of AuNPs was periodically monitored by UV-visible spectroscopy. The obtained AuNPs were characterized by Xray diffraction, energy dispersive spectroscopy, scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared (FTIR) spectroscopy. Catalytic activity and toxicity of the AuNPs were evaluated. Results: The AuNPs obtained from this study mostly were spherical in shape with approximately 15 nm in size. The presence of functional groups derived from C. xanthorrhiza rhizome extract involved in the gold bio-reduction process was confirmed by the spectrum of FTIR spectroscopy. The biosynthesized AuNPs at the concentration of 0.5 μg/ml had catalytic activity in dye degradation of Congo red. The results showed that this biogenic AuNPs did not cause any toxicity to zebrafish embryos and all tested cell lines. Conclusion: The biocompatible AuNPs with catalytic activity were successfully fabricated with C. xanthorrhiza rhizome extract by simple eco-friendly and inexpensive method. This catalytic activity of the obtained AuNPs is potentially useful for industrial applications as well as nanoscience and nanotechnology.


2020 ◽  
Author(s):  
Srividya Parthasarathy ◽  
Sanjana Jayacumar ◽  
Sudestna Chakraborty ◽  
Prathyusha Soundararajan ◽  
Darshani Joshi ◽  
...  

Abstract The field of nanotechnology is gaining interest among the researchers towards the eco-friendly way of synthesis of nanoparticles. In this project, green synthesis technique was employed to induce the synthesis of copper nanoparticles using Plectranthus amboinicus, i.e. Mexican mint, identified as Coleus amboinicus leaf extract. We report an eco-friendly synthesis of copper nanoparticle using Plectranthus amboinicus leaf extract, which is a simple and an ostentatiously rapid method which produces stable nanoparticles. The copper sulphate solution was naturally employed as a precursor for synthesizing the copper nanoparticles. The extract of the plant Plectranthus amboinicus was found to showcase excellent reducing and stabilizing properties. By using Ultraviolet-Visible spectroscopy, Zeta Potential, and X-Ray Diffraction (XRD) studies, it was confirmed that copper nanoparticles have been synthesized. The UV-Spectrometer analysis shows the characteristic peak indicating the synthesis of copper nanoparticles. The pattern of XRD analysis showed particle size of 16 - 25 nm and it reveals high crystallinity of the copper nanoparticles. Zeta potential was done to find the charge of the nanoparticles and size distribution which showed to have significant stability. This method proves to be cost-effective, can be performed at ease, and it’s also free of pollutants.


2019 ◽  
Author(s):  
Du Sun ◽  
yunfei wang ◽  
Kenneth Livi ◽  
chuhong wang ◽  
ruichun luo ◽  
...  

<div> <p>The synthesis of alloys with long range atomic scale ordering (ordered intermetallics) is an emerging field of nanochemistry. Ordered intermetallic nanoparticles are useful for a wide variety of applications such as catalysis, superconductors, and magnetic devices. However, the preparation of nanostructured ordered intermetallics is challenging in comparison to disordered alloys, hindering progress in materials development. We report a process for converting colloidally synthesized ordered intermetallic PdBi<sub>2</sub> to ordered intermetallic Pd<sub>3</sub>Bi nanoparticles under ambient conditions by an electrochemically induced phase transition. The low melting point of PdBi<sub>2</sub> corresponds to low vacancy formation energies which enables the facile removal of the Bi from the surface, while simultaneously enabling interdiffusion of the constituent atoms via a vacancy diffusion mechanism under ambient conditions. The resulting phase-converted ordered intermetallic Pd<sub>3</sub>Bi exhibits 11x and 3.5x higher mass activty and high methanol tolerance for the oxygen reduction reaction compared to Pt/C and Pd/C, respectively,which is the highest reported for a Pd-based catalyst, to the best of our knowledge. These results establish a key development in the synthesis of noble metal rich ordered intermetallic phases with high catalytic activity, and sets forth guidelines for the design of ordered intermetallic compounds under ambient conditions.</p> </div>


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Ryosuke Sinmyo ◽  
Elena Bykova ◽  
Sergey V. Ovsyannikov ◽  
Catherine McCammon ◽  
Ilya Kupenko ◽  
...  

Abstract Iron oxides are fundamentally important compounds for basic and applied sciences as well as in numerous industrial applications. In this work we report the synthesis and investigation of a new binary iron oxide with the hitherto unknown stoichiometry of Fe7O9. This new oxide was synthesized at high-pressure high-temperature (HP-HT) conditions, and its black single crystals were successfully recovered at ambient conditions. By means of single crystal X-ray diffraction we determined that Fe7O9 adopts a monoclinic C2/m lattice with the most distorted crystal structure among the binary iron oxides known to date. The synthesis of Fe7O9 opens a new portal to exotic iron-rich (M,Fe)7O9 oxides with unusual stoichiometry and distorted crystal structures. Moreover, the crystal structure and phase relations of such new iron oxide groups may provide new insight into the cycling of volatiles in the Earth’s interior.


Author(s):  
Nariman Marooufpour ◽  
Mehrdad Alizadeh ◽  
Mehrnaz Hatami ◽  
Behnam Asgari Lajayer

Biology ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 784
Author(s):  
Agnieszka Sidorowicz ◽  
Tomasz Szymański ◽  
Jakub Dalibor Rybka

Nowadays, nanostructures having tremendous chemical and physical properties are gaining attention in the biomedical industry. However, when they are prepared through classical methods (physical and chemical), they are often non-biocompatible and toxic. Considering the mentioned factors, in this research, organometallic silver nanostructures (OMAgNs) have been prepared by the green chemistry method using the acetone, methanol, and methanol-hexane-based extracts of the medicinally important plant Cichorium intybus. Secondary metabolites from C. intybus can be used as an alternative to synthetic reagents at an industrial scale to manufacture biosafe and economical nanostructures with enhanced physicochemical parameters. Prepared nanostructures were characterized using SEM, XRD, FTIR, TGA, UV, and zeta potential measurement. SEM analysis revealed different shapes of OMAgNs, prepared with various extracts. XRD analysis showed the crystallinity of the nanostructures. FTIR spectroscopy helped to identify groups of compounds present in the extracts and used for the OMAgNs synthesis. Out of the three tested OMAgNs, those prepared with methanol extract were selected due to the highest obtained yield and stability (highest negative zeta potential) and were tested as a cost-efficient and active agent to photodegrade organic pollutant, Brilliant Blue R, using energy from sunlight. A decrease in UV-VIS absorbance confirmed the rapid degradation of the dye.


RSC Advances ◽  
2016 ◽  
Vol 6 (109) ◽  
pp. 108010-108016 ◽  
Author(s):  
Zhen Zhou ◽  
Lu Yang ◽  
Yefei Wang ◽  
Cheng He ◽  
Tao Liu ◽  
...  

Two types of Ni(ii)-based coordinated frameworks have been solvothermally synthesized via solvent driven self-assembly, showing efficient heterogeneous catalytic activity toward cycloaddition of CO2 with epoxides under ambient conditions.


Sign in / Sign up

Export Citation Format

Share Document