scholarly journals Fabrication and Characterization of Copper Nanoparticles by Green Synthesis Approach Using Plectranthus Amboinicus Leaves Extract

2020 ◽  
Author(s):  
Srividya Parthasarathy ◽  
Sanjana Jayacumar ◽  
Sudestna Chakraborty ◽  
Prathyusha Soundararajan ◽  
Darshani Joshi ◽  
...  

Abstract The field of nanotechnology is gaining interest among the researchers towards the eco-friendly way of synthesis of nanoparticles. In this project, green synthesis technique was employed to induce the synthesis of copper nanoparticles using Plectranthus amboinicus, i.e. Mexican mint, identified as Coleus amboinicus leaf extract. We report an eco-friendly synthesis of copper nanoparticle using Plectranthus amboinicus leaf extract, which is a simple and an ostentatiously rapid method which produces stable nanoparticles. The copper sulphate solution was naturally employed as a precursor for synthesizing the copper nanoparticles. The extract of the plant Plectranthus amboinicus was found to showcase excellent reducing and stabilizing properties. By using Ultraviolet-Visible spectroscopy, Zeta Potential, and X-Ray Diffraction (XRD) studies, it was confirmed that copper nanoparticles have been synthesized. The UV-Spectrometer analysis shows the characteristic peak indicating the synthesis of copper nanoparticles. The pattern of XRD analysis showed particle size of 16 - 25 nm and it reveals high crystallinity of the copper nanoparticles. Zeta potential was done to find the charge of the nanoparticles and size distribution which showed to have significant stability. This method proves to be cost-effective, can be performed at ease, and it’s also free of pollutants.


2020 ◽  
Vol 6 (3) ◽  
pp. 908-910
Author(s):  
C. Sreeja ◽  
K. Annieta Philip ◽  
K. Shamil ◽  
O.P. Asraj ◽  
S. Sreeja

In the present days the development of efficient green synthesis of metal nanoparticles has become a major focus of researchers. It was aimed in order to find a safe, economic and eco-friendly technique for the production of well characterized nanoparticles. The present study reports the green synthesis of copper nanoparticles using plant extract (pepper leaf extract) and a copper salt (copper chloride, CuCl2). Copper nanoparticles are produced by the reduction of CuCl2, while the aqueous leaf extract act as reducing agent. The formation of copper nanoparticles was recognized by the change of colour from blue to black. The synthesized nanoparticles were then characterized through EDAX, XRD, and UV-Vis spectrophotometry. EDAX confirmed the formation of copper nanoparticles. The UV-Vis spectrophotometer analysis confirmed the absorption peak of copper nanoparticles at wavelength of 500-700 nm. XRD analysis revealed three sharp peaks specifically referred to face centered cubic structure of metallic copper. This work was also carried out the optical studies of copper nanoparticles which were exposed to direct sunlight. This study reflected the effect of sunlight intensity on the absorption peak of copper nanoparticles.





2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Akshay Rajeev Geetha ◽  
Elizabeth George ◽  
Akshay Srinivasan ◽  
Jameel Shaik

Production of silver nanoparticles from the leaf extracts ofPimenta dioicais reported for the first time in this paper. Three different sets of leaves were utilized for the synthesis of nanoparticles—fresh, hot-air oven dried, and sun-dried. These nanoparticles were characterized using UV-Vis spectroscopy and AFM. The results were diverse in that different sizes were seen for different leaf conditions. Nanoparticles synthesized using sun-dried leaves (produced using a particular ratio (1 : 0.5) of the leaf extract sample and silver nitrate (1 mM), resp.) possessed the smallest sizes. We believe that further optimization of the current green-synthesis method would help in the production of monodispersed silver nanoparticles having great potential in treating several diseases.



Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3035
Author(s):  
Dovydas Karoblis ◽  
Diana Griesiute ◽  
Kestutis Mazeika ◽  
Dalis Baltrunas ◽  
Dmitry V. Karpinsky ◽  
...  

In this study, a highly crystalline bismuth ferrite (BFO) powder was synthesized using a novel, very simple, and cost-effective synthetic approach. It was demonstrated that the optimal annealing temperature for the preparation of highly-pure BFO is 650 °C. At lower or higher temperatures, the formation of neighboring crystal phases was observed. The thermal behavior of BFO precursor gel was investigated by thermogravimetric and differential scanning calorimetry (TG-DSC) measurements. X-ray diffraction (XRD) analysis and Mössbauer spectroscopy were employed for the investigation of structural properties. Scanning electron microscopy (SEM) was used to evaluate morphological features of the synthesized materials. The obtained powders were also characterized by magnetization measurements, which showed antiferromagnetic behavior of BFO powders.



Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4364
Author(s):  
Rutaba Amjad ◽  
Bismillah Mubeen ◽  
Syed Shahbaz Ali ◽  
Syed Sarim Imam ◽  
Sultan Alshehri ◽  
...  

The use of biomaterials in the synthesis of nanoparticles is one of the most up-to-date focuses in modern nanotechnologies and nanosciences. More and more research on green methods of producing metal oxide nanoparticles (NP) is taking place, with the goal to overcome the possible dangers of toxic chemicals for a safe and innocuous environment. In this study, we synthesized copper nanoparticles (CuNPs) using Fortunella margarita leaves’ extract, which reflects its novelty in the field of nanosciences. The visual observation of a color change from dark green to bluish green clearly shows the instant and spontaneous formation of CuNPs when the phytochemicals of F. margarita come in contact with Cu+2 ions. The synthesis of CuNPs was carried out at different conditions, including pH, temperature, concentration ratio and time, and were characterized with UV-Vis absorption spectra, scanning electron microscope (SEM) and X-ray diffraction (XRD). The UV-Vis analysis reveals the surface plasmon resonance property (SPR) of CuNPs, showing a characteristic absorption peak at 679 nm, while SEM reveals the spherical but agglomerated shape of CuNPs of the size within the range of 51.26–56.66 nm.



2021 ◽  
Author(s):  
Vanaraj sekar

Abstract A simple and eco-friendly method for the green synthesis of silver nanoparticles (AgNPs) by ultrasound-assisted strategy using Barleria buxifolia leaf extract as a reducing and capping agent was established in this study. The obtained AgNPs were characterized. UV-vis spectrum, Fourier transform infrared spectroscopy (FTIR), scanning and transmission electron microscopy (SEM and TEM), Energy Dispersive X-Ray Analyzer (EDX), X-ray diffraction, dynamic light scattering (DLS) analysis showed that the obtained AgNPs were mono dispersed spheres with uniform size of 80 nm. UV-vis spectroscopy, FTIR, and XRD analysis indicated that the surface of the obtained AgNPs was covered with organic molecules in plant extracts. The results of ABTS assays showed that high antioxidant activity was seen in the obtained AgNPs. Green synthesized AgNPs showed potent antibacterial and anti-biofilm activity against tested pathogens. Cytotoxicity assay showed that the obtained AgNPs were significantly cytotoxic to cancer cell line (MCF-7). In addition, the AgNPs synthesized in this paper can also photo catalytically degrade methylene blue dye under visible light. The potent bioactivity exhibited by the green synthesized silver nanoparticles leads towards the multiple use as antioxidant, antibacterial, anti-biofilm, cytotoxic as well as photo catalytic agent.



Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 555 ◽  
Author(s):  
Prince Edwin Das ◽  
Imad A. Abu-Yousef ◽  
Amin F. Majdalawieh ◽  
Srinivasan Narasimhan ◽  
Palmiro Poltronieri

The synthesis of metal nanoparticles using plant extracts is a very promising method in green synthesis. The medicinal value of Moringa oleifera leaves and the antimicrobial activity of metallic copper were combined in the present study to synthesize copper nanoparticles having a desirable added-value inorganic material. The use of a hydroalcoholic extract of M. oleifera leaves for the green synthesis of copper nanoparticles is an attractive method as it leads to the production of harmless chemicals and reduces waste. The total phenolic content in the M. oleifera leaves extract was 23.0 ± 0.3 mg gallic acid equivalent/g of dried M. oleifera leaves powder. The M. oleifera leaves extract was treated with a copper sulphate solution. A color change from brown to black indicates the formation of copper nanoparticles. Characterization of the synthesized copper nanoparticles was performed using ultraviolet-visible light (UV-Vis) spectrophotometry, Fourier-transform infrared (FTIR) spectrometry, high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The synthesized copper nanoparticles have an amorphous nature and particle size of 35.8-49.2 nm. We demonstrate that the M. oleifera leaves extract and the synthesized copper nanoparticles display considerable antioxidant activity. Moreover, the M. oleifera leaves extract and the synthesized copper nanoparticles exert considerable anti-bacterial activity against Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, and Enterococcus faecalis (MIC values for the extract: 500, 250, 250, and 250 µg/mL; MIC values for the copper nanoparticles: 500, 500, 500, and 250 µg/mL, respectively). Similarly, the M. oleifera leaves extract and the synthesized copper nanoparticles exert relatively stronger anti-fungal activity against Aspergillus niger, Aspergillus flavus, Candida albicans, and Candida glabrata (MIC values for the extract: 62.5, 62.5, 125, and 250 µg/mL; MIC values for the copper nanoparticles: 125, 125, 62.5, and 31.2 µg/mL, respectively). Our study reveals that the green synthesis of copper nanoparticles using a hydroalcoholic extract of M. oleifera leaves was successful. In addition, the synthesized copper nanoparticles can be potentially employed in the treatment of various microbial infections due to their reported antioxidant, anti-bacterial, and anti-fungal activities.



Nano Express ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 010033
Author(s):  
Sandip Kumar Chandraker ◽  
Mishri Lal ◽  
Mithun Kumar Ghosh ◽  
Vivek Tiwari ◽  
Tanmay Kumar Ghorai ◽  
...  


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
H. C. Ananda Murthy ◽  
Tegene Desalegn ◽  
Mebratu Kassa ◽  
Buzuayehu Abebe ◽  
Temesgen Assefa

Indigenous medicinal plant of Ethiopia has been applied for the first time to investigate the synergistic influence of phytoconstituents in green copper nanoparticles (g-Cu NPs) towards the enhancement of antimicrobial properties of NPs. We report the green synthesis of Cu NPs using Hagenia abyssinica (Brace) JF. Gmel. leaf extract. The synthesized g-Cu NPs were characterized by UV-visible, UV-DRS, FT-IR, XRD, SEM, EDXA, TEM, HRTEM, and SAED techniques. The maximum absorbance, λmax, was found to be 403 nm for g-Cu NPs due to surface plasmon resonance. The energy gap, Eg of NPs, was found to be 2.19 eV. FTIR spectra confirmed the presence of polyphenols, tannins, and glycosides in the leaf extract of Hagenia abyssinica. The spectral band at 740 cm-1 is a characteristic of interaction between Cu and biomolecules of the extract. The XRD analysis revealed that the g-Cu NPs appears to be more crystalline in nature. SEM and TEM micrographs showed a mix of spherical, hexagonal, triangular, cylindrical, and irregularly shaped Cu particles. The average particle size of NPs was found to be 34.76 nm by ImageJ analysis. EDX analysis confirmed the presence of copper in the g-Cu NPs. In addition, the SAED pattern of g-Cu NPs presented concentric circular patterns for 4 major planes of crystalline copper and its oxides. The experimental and calculated d-spacing values of one of the crystal planes (111) were found to be 0.2432 nm and 0.2444 nm, respectively. The d-spacing values of 0.2444 nm and 0.2040 nm correspond to d111Cu2O and d111Cu lattice fringes, respectively. The antibacterial test conducted on E. coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis showed good zone of inhibitions 12.7, 12.7, 14.7, and 14.2 mm, respectively, proving potentiality of g-Cu NPs as a remedy for infectious diseases caused by tested pathogens.



2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Dhiraj A. Jamdade ◽  
Dishantsingh Rajpali ◽  
Komal A. Joshi ◽  
Rohini Kitture ◽  
Anuja S. Kulkarni ◽  
...  

Rapid, eco-friendly, and cost-effective one-pot synthesis of copper nanoparticles is reported here using medicinal plants like Gnidia glauca and Plumbago zeylanica. Aqueous extracts of flower, leaf, and stem of G. glauca and leaves of P. zeylanica were prepared which could effectively reduce Cu2+ ions to CuNPs within 5 h at 100°C which were further characterized using UV-visible spectroscopy, field emission scanning electron microscopy, high-resolution transmission electron microscopy, energy dispersive spectroscopy, dynamic light scattering, X-ray diffraction, and Fourier-transform infrared spectroscopy. Further, the CuNPs were checked for antidiabetic activity using porcine pancreatic α-amylase and α-glucosidase inhibition followed by evaluation of mechanism using circular dichroism spectroscopy. CuNPs were found to be predominantly spherical in nature with a diameter ranging from 1 to 5 nm. The phenolics and flavonoids in the extracts might play a critical role in the synthesis and stabilization process. Significant change in the peak at ∼1095 cm−1 corresponding to C-O-C bond in ether was observed. CuNPs could inhibit porcine pancreatic α-amylase up to 30% to 50%, while they exhibited a more significant inhibition of α-glucosidase from 70% to 88%. The mechanism of enzyme inhibition was attributed due to the conformational change owing to drastic alteration of secondary structure by CuNPs. This is the first study of its kind that provides a strong scientific rationale that phytogenic CuNPs synthesized using G. glauca and P. zeylanica can be considered to develop candidate antidiabetic nanomedicine.



Sign in / Sign up

Export Citation Format

Share Document