scholarly journals Zagreb clay improved with various binders

2021 ◽  
Vol 73 (09) ◽  
pp. 871-880

The paper presents the results of laboratory testing of clay samples from two localities in the city of Zagreb, mixed with fly ash, slag and cement. Under laboratory conditions, composite samples of clay mixtures with binders were prepared, where the binders are added to the clay in ratios of 5 %, 10 % and 20 %, and tested at different maturation time intervals of 7, 14 and 28 days. The influence of different type and amount of binder and age of the composite sample on moisture and uniaxial compressive strength was examined and analysed. The obtained results show that the utilization of cement, fly ash and slag can improve the physical and mechanical properties of Zagreb clay, depending on the amount of binder and the maturation time of the composite.

Author(s):  
Haopeng Jiang ◽  
Annan Jiang ◽  
Fengrui Zhang

Experimental tests were conducted to study the influence of natural cooling and water cooling on the physical and mechanical properties of quartz sandstone. This study aims to understand the effect of different cooling methods on the physical and mechanical properties of quartz sandstone (such as mass, volume, density, P-wave velocity, elastic modulus, uniaxial compressive strength, etc.). The results show that the uniaxial compressive strength (UCS) and elastic modulus(E) of the specimens cooled by natural-cooling and water-cooling decrease with heating temperature. At 800℃, after natural cooling and water cooling, the average value of UCS decreased by 34.65% and 57.90%, and the average value of E decreased by 87.66% and 89.05%, respectively. Meanwhile, scanning electron microscope (SEM) images were used to capture the development of microcracks and pores within the specimens after natural-cooling and water-cooling, and it was found that at the same temperature, water cooling treatment was more likely to cause microcracks and pores, which can cause more serious damage to the quartz sandstone. These results confirm that different cooling methods have different effects on the physical and mechanical properties of quartz sandstone, and provide a basis for the stability prediction of rock mass engineering such as tunnel suffering from fire.


Clay Minerals ◽  
2011 ◽  
Vol 46 (2) ◽  
pp. 213-223 ◽  
Author(s):  
V. Lilkov ◽  
I. Rostovsky ◽  
O. Petrov

AbstractCement mortars and concretes incorporating clinoptilolite, silica fume and fly ash were investigated for changes in their physical and mechanical properties. It was found that additions of 10% clinoptilolite and 10% Pozzolite (1:1 mixture of silica fume and fly ash) were optimal for improvement of the quality of the hardened products, giving 8% and 13% increases in flexural and compressive strength respectively. The specific pore volume of the mortars incorporating zeolite decreased between the 28th and 180th day to levels below the values for the control composition due to the fact that clinoptilolite exhibits its pozzolanic activity later in the hydration. In these later stages, pores with radii below 500 nm increased at the expense of larger pores. The change in the pore-size distribution between the first and sixth months of hydration occurs mostly in the mortars with added zeolite.


2013 ◽  
Vol 10 (4) ◽  
pp. 359-366 ◽  
Author(s):  
B. Adebayo ◽  
B. Adetula

This work deals with the investigation of physical and mechanical properties of selected rocks for condition of drilling categorization. Rock samples collected from five drilling locations were tested in the laboratory for uniaxial compressive strength, tensile strength, and Drilling Rate Index (DRI) using 1,100 kN compression machine, point load tester and miniature drill. Similarly, hardness, brittleness, Rock Abrasivity Index (RAI), penetration rate and bit wear rate were determined. The results showed that uniaxial compressive strength, tensile strength and Drilling Rate Index varied from 47.78 - 111.11 MPa, 8.09 - 19.44 MPa, and 20 - 52 respectively. The Nast point system chart was used to classify the rocks into drilling conditions. The drilling classification shows that the drilling condition of the rocks varied from slow to fast. The drillability characteristics of the rocks vary from extremely low to medium as specified by the Drilling rate Index (DRI). It was concluded that uniaxial compressive strength, texture and grain size, drilling rate index and Equivalent Quartz Content (EQC) are important parameters affecting drilling condition of the rocks.


Author(s):  
Vu-An Tran

This research investigates the physical and mechanical properties of mortar incorporating fly ash (FA), which is by-product of Duyen Hai thermal power plant. Six mixtures of mortar are produced with FA at level of 0%, 10%, 20%, 30%, 40%, and 50% (by volume) as cement replacement and at water-to-binder (W/B) of 0.5. The flow, density, compressive strength, flexural strength, and water absorption tests are made under relevant standard in this study. The results have shown that the higher FA content increases the flow of mortar but significantly decreases the density of mixtures. The water absorption and setting time increases as the samples incorporating FA. Compressive strength of specimen with 10% FA is approximately equal to control specimen at the 91-day age. The flexural strength of specimen ranges from 7.97 MPa to 8.94 MPa at the 91-day age with the best result for samples containing 10% and 20% FA.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3693
Author(s):  
Faxin Li ◽  
Dawei Yin ◽  
Chun Zhu ◽  
Feng Wang ◽  
Ning Jiang ◽  
...  

In this investigation, six groups of cemented coal gangue-fly ash backfill (CGFB) samples with varying amounts of kaolin (0, 10, 20, 30, 40, and 50%) instead of cement are prepared, and their mechanical properties are analyzed using uniaxial compression, acoustic emission, scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The uniaxial compressive strength, peak strain, and elastic modulus of CGFB samples decreased with the kaolin content. The average uniaxial compressive strength, elastic modulus, and peak strain of CGFB samples with 10% amount of kaolin are close to that of CGFB samples with no kaolin. The contribution of kaolin hydration to the strength of CGFB sample is lower than that of cement hydration, and the hydration products such as ettringite and calcium-silicate-hydrate gel decrease, thereby reducing strength, which mainly plays a role in filling pores. The contents of kaolin affect the failure characteristics of CGFB samples, which show tensile failure accompanied by local shear failure, and the failure degree increases with the kaolin content. The porosity of the fracture surface shows a decreasing trend as a whole. When the amount of kaolin instead of cement is 10%, the mechanical properties of CGFB samples are slightly different from those of CGFB samples without kaolin, and CGFB can meet the demand of filling strength. The research results provide a theoretical basis for the application of kaolin admixture in fill mining.


2020 ◽  
Vol 26 (1) ◽  
pp. 9-16
Author(s):  
Yulita Arni Priastiwi ◽  
Arif Hidayat ◽  
Dwi Daryanto ◽  
Zidny Salamsyah Badru

The presence of white soil in a geopolymer mortar affects the physical and mechanical properties of the mortar itself, especially in compressive strength, density and modulus of elasticity produced. Geopolymer mortar composed of fly ash, sand, water, and NaOH which acts as an alkaline activator compared to mortar from the same material, but white soil from Kupang is added as a substitution of fly ash. Specimens are made in six variations. Geopolymer mortar composers using a ratio of 1 binder: 3 sand with w/b of 0.5. Binder composed of fly ash with white soil substitution of 0; 5; 10; 15; 20 and 30% by weight of fly ash. An activator NaOH 8M solution was added to the mixture. Both white soil and fly ash pass of sieve no. 200 with a moisture content of 0%. Mortar made measuring 5x5x5 cm. The mortar was treated by the oven of method at 60 oC for 24 hours until the mortar does not change in weight. The test results show geopolymer mortar with 15% substitution of white soil to fly ash has the highest compressive strength, density and modulus of elasticity among other variations. In all mortar variations, compressive strength at 14 days has reached 75% of strength at 28 days.


2021 ◽  
Vol 15 (1) ◽  
pp. 51
Author(s):  
Anni Susilowati ◽  
Iqbal Yusra

Abstract One of the world's construction needs is casting in large volumes that require concrete with low hydration heat, and one of the problems is that the concrete has a setting during the casting queue. Therefore, a research was conducted on adding retarder to concrete with a mixture of GGBFS and Fly Ash. The purpose of this research was to analyze the physical and mechanical properties of concrete, the effect of adding retarder and obtain optimal retarder levels. This research used an experimental methods to make concrete specimens of 75% cement mix: GGBFS 15%: Fly Ash 10% with a water cement ratio of 0.5 using mix design SNI-03-2834-2000. Variations of the retarder added to the concrete mixture were 0%, 0.2%, 0.4%, and 0.6% by weight of cement with the Naptha RD 31 type. Analysis of the effect of the retarder used statistical regression test methods on SPSS. The results of research obtained the longest setting time in this researchwas 1890 minutes at a variation of 0.6% with a slump of 168 mm. The compressive strength of the concrete increased by 12.07% - 52.36% by using a retarder added material. Based on the research results, it was obtained that the optimum level of use of retarder in mixed concrete GGBFS and Fly Ash was 0.2% because it has the best physical and mechanical properties. Keywords: Fly Ash, GGBFS, Compressive Strength, Retarder


2018 ◽  
Vol 2 (4) ◽  
Author(s):  
Mehdi Jalili ◽  
Mohmad Reza Ghasemi ◽  
Ali Reza Pifloush

In some parts of the world mechanical properties of problematic soils are not suitable for construction purposes. Today, regard to the importance of the soil improvement; by considering methods with more concordance with the environmental mechanisms in the nature, and with study and combination of geotechnical science, microbiology and geochemistry; researchers try to provide a suitable way to improve the physical and mechanical properties of the problematic soils. In this paper, the effect of the aerobic microorganisms of Sporosarsina Pasteurii (PTCC 1645), as a producer of Urease for the sedimentation of calcium carbonate and improvement of granular soil of Garmsar Industrial Town is evaluated experimentally in order to check the effects of this phenomena on the shear strength and stiffness of the granular soils. The results of the uniaxial compressive strength tests show the effect of adding the above mentioned microbial solution to the soils, in case of increased uniaxial compressive strength and stiffness of the soil. It should be mentioned that the granular soils have no compressive strength, naturally but after bio cementation the samples got notable values.


Author(s):  
A. F. Kosach ◽  
M. A. Rashchupkina ◽  
M. A. Darulis ◽  
V. G. Gorchakov

Purpose: The aim of the paper is to obtain the cement brick having high physical and mechanical properties due to the additive based on ultrafine ash particles obtained after the wet ash discharge at Omsk power-and-heating plant. Methodology: The mechanical and mechanochemical grinding is used to generate ultrafine ash particles. Research findings: Research investigations show that the use of ultrafine ash particles the size of which varies between 0.3 and 0.9 μm, allows up to 30% cement saving and increase the physical and mechanical properties of fly ashcement and fly ash sand-lime bricks. The compressive and flexural strength of the former increases by 35 % and 32.4 %, respectively. And the compressive strength of the latter increases by 30 %, while its thermal conductivity reduces by 6.5 %. The addition of ultrafine ash particles to cement brick composition improves the ecological situation in the region. Practical implications: The proposed technique can be used in the production of cement brick with improved physical and mechanical properties. The optimum ash/cement ratio is 30:70.


2021 ◽  
Vol 887 ◽  
pp. 528-535
Author(s):  
V.A. Kalneus ◽  
D.A. Nemushchenko ◽  
V.V. Larichkin ◽  
A.A. Briutov

The article analyses the influence of SiO2 and Al2O3 nanopowders on properties of ceramics consisting of fly ash from thermal power plants, glass waste, and clay binder. Based on studies of physical and mechanical properties of the obtained ceramics (ultimate compressive strength, ultimate three-point bending strength, wear resistance, and water absorption), the paper shows the positive influence of the nanoadditives. The optimal number of SiO2 and Al2O3 nanopowders in the formulation is 0.5 wt. % that has the strongest effect on ultimate compressive strength and water absorption of the fly ash ceramics samples. The direction of further research on improving the properties of ceramic products is an application of the Al2O3 nanopowder as more perspective nanoadditive using clay dispersant.


Sign in / Sign up

Export Citation Format

Share Document