scholarly journals STUDY OF BIOFILM FORMATION AS A VIRULENCE MARKER IN CANDIDA SPECIES ISOLATED FROM VARIOUS CLINICAL SPECIMENS.

2012 ◽  
Vol 1 (6) ◽  
pp. 1238-1246 ◽  
Author(s):  
Saroj Golia ◽  
Vivek Hittinahalli ◽  
Sangeetha K.T ◽  
Vasudha C.L.
2021 ◽  
Vol 22 (7) ◽  
pp. 3666
Author(s):  
Bettina Szerencsés ◽  
Attila Gácser ◽  
Gabriella Endre ◽  
Ildikó Domonkos ◽  
Hilda Tiricz ◽  
...  

The increasing rate of fungal infections causes global problems not only in human healthcare but agriculture as well. To combat fungal pathogens limited numbers of antifungal agents are available therefore alternative drugs are needed. Antimicrobial peptides are potent candidates because of their broad activity spectrum and their diverse mode of actions. The model legume Medicago truncatula produces >700 nodule specific cysteine-rich (NCR) peptides in symbiosis and many of them have in vitro antimicrobial activities without considerable toxicity on human cells. In this work we demonstrate the anticandidal activity of the NCR335 and NCR169 peptide derivatives against five Candida species by using the micro-dilution method, measuring inhibition of biofilm formation with the XTT (2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide) assay, and assessing the morphological change of dimorphic Candida species by microscopy. We show that both the N- and C-terminal regions of NCR335 possess anticandidal activity as well as the C-terminal sequence of NCR169. The active peptides inhibit biofilm formation and the yeast-hypha transformation. Combined treatment of C. auris with peptides and fluconazole revealed synergistic interactions and reduced 2-8-fold the minimal inhibitory concentrations. Our results demonstrate that shortening NCR peptides can even enhance and broaden their anticandidal activity and therapeutic potential.


2020 ◽  
Vol 29 (3) ◽  
pp. 37-45
Author(s):  
Mabrouk M Ghonaim ◽  
Azza Z. Labeeb ◽  
Alyaa I. Eliwa ◽  
Eman H. Salem

Background: Accurate and rapid identification of Candida species is necessary for proper diagnosis and treatment of candidiasis due to emergences of drug-resistant strains especially among immunocompromised patients. Objectives: Identification of Candida clinical isolates to the species level using different phenotypic and molecular methods. Biofilm-forming ability and antifungal resistance were also studied. Methodology: Sixty-nine Candida strains were isolated from 220 immunocompromised patients. Identification was performed using chromogenic Candida agar, VITEK 2 system and multiplex polymerase chain reaction (PCR). Biofilm formation was detected by the tube method and antifungal susceptibility was tested using the VITEK2 system. Results: The most common source of Candida isolates was from urine (33.3%) and ICUs (56.6%). VITEK 2 system detected 9 spp.: C. albicans (34.8%), C. tropicalis (21.7%), C. famata (8.7%), C. lusitaniae (7.2%), C. cruzi (7.2%), C. ciferri (5.8%), C. dubliniensis (5.8%), C. parapsilosis (5.8 %) and C. glabrata. Candida isolates showed high resistance to flucytocine (49.3%), and high sensitivity to fluconazole, micafungin, voriconazole and caspofungin (88.4%, 81.2% and 81.2 % respectively). Only 30.4% of all Candida isolates were biofilm producers. There was a positive relationship between antifungal resistance and biofilm formation among Candida isolates. Conclusion: C. albicans was the predominant species. Chromogenic Candida agar and VITEK 2 system were valuable tests compared to PCR in speciation of Candida isolates. Antifungal susceptibility was significantly related to biofilm production and its evaluation is important for proper treatment..


2020 ◽  
Vol 37 (1) ◽  
pp. 83-100
Author(s):  
Abdelhamid , Amira E. ◽  
Zaki , Sanaa M. I. ◽  
Ahmed , Ola I. ◽  
Fathi , Marwa S. M. ◽  
Abu Shady , Nancy M. R.

2016 ◽  
Vol 9 (1) ◽  
pp. 20 ◽  
Author(s):  
Lsmet Nigar ◽  
Shirin Tarafder ◽  
Rehana Razzak Khan ◽  
S. M. Ali Ahmed ◽  
Ahmed Abu Saleh

<p><strong>Background:</strong> Candida species are responsible for various clinical manifestations from mucocutaneous overgrowth to blood stream infections especially in immunocompromized situations. Although C. albicans is the most prevalent species, high incidence of non-albicans Candida species with antifungal resistance are emerging which is posing a serious threat to the patients care.</p><p><strong>Objective:</strong> This study aimed to isolate and identify different species of Candida from different clinical specimens. Methods: A total of 100 different clinical specimens were studied of which 35 were oral swab, 28 were high vaginal swab, 15 were urine, 14 were nail, 04 were bronchoalveolar lavage and peritoneal fluid were 04. Among 100 clinical specimens, Candida isolates were identified in 64 specimens. Isolation of Candida species was done by primary culture in SDA. Subsequent identification of species were performed by germ tube test, subculture in chromo­genic agar medium and carbohydrate assimilation test with commonly used twelve sugars.</p><p><strong>Results:</strong> Out of 64 isolated Candida species, Candida albicans were 51.56% and the non-albicans Candida species were 48.44%. The most prevalent Candida species was C. albicans 33 (51.53%) followed by C. tropicalis 17 (26.56%). C. glabrata 4 (6.25%), C. parapsilo­sis 4 (6.25%), C. krusei 3 (4.68%) and C. guilliermondii 2 (3.2%). One of the isolated Candida species was unidentified.</p><p><strong>Conclusion:</strong> Though Candida albicans was found as the most common species, but non-albicans Candida species are appearing as emerging pathogens as well. Exposure to chemotherapy appeared to be the commonest predisposing factor for Candida infection followed by indwelling urinary catheter in situ for prolong period.</p>


Author(s):  
Jamsheera Cp ◽  
Ethel Suman

Objective: The present study aimed at finding the resistance pattern of Pseudomonas aeruginosa and other Pseudomonas species isolated from various clinical specimens in the laboratory.Methods: A total of 150 isolates of different species of Pseudomonas obtained from various clinical specimens processed at the Microbiology laboratory of Kasturba Medical College, Manipal Academy of Higher Education, were taken for this study. Antibiotic susceptibility testing was performed by Kirby-Bauer disc diffusion method and interpreted according to the CLSI guidelines. Biofilm assay was performed by modified O’Toole and Kolter method. The results were analyzed using SPSS 17.0 and Student’s unpaired t-test, Kruskal–Wallis, Mann–Whitney, ANOVA, and Chi-square test. p<0.05 was considered statistically significant.Results: Increased resistance was observed by P. aeruginosa to cefotaxime, cotrimoxazole, levofloxacin, ofloxacin, and ticarcillin clavulanate. There was also a good correlation between antibiotic resistance to aztreonam, netilmicin, and ceftazidime and biofilm production. Results of the present study, therefore, demonstrated the occurrence of resistance to various antipseudomonal agents among the biofilm-producing P. aeruginosa isolates.Conclusion: The present study may help in assessing the seriousness of drug resistance caused by biofilm formation in P. aeruginosa and devise strategies through antibiotic policies to minimize such problems.


2010 ◽  
Vol 38 (2) ◽  
pp. 146-151 ◽  
Author(s):  
Hyun-Sung Shin ◽  
Youn-Bo Park ◽  
Du-Sik Shin

Sign in / Sign up

Export Citation Format

Share Document