scholarly journals Evaluation of the Disintegrant Properties of Silicified Oryza sativa Starch Co-Processed with Dioscorea dumentorum Starch in Directly Compressed Paracetamol Tablet Formulations

Author(s):  
Joy Dzever ◽  
Oladapo Adewale Adetunji

Starch is a readily available excipient which finds application in the pharmaceutical industry as binders, diluents and disintegrants. The use of starch is however limited by its poor flow characteristics. Co-processing exploits the desirable attributes of excipients, while masking the undesirable properties. Co-processed starch, thus presents great potential for use in formulation of directly compressed tablets which require materials with strong inherent cohesive and free flowing properties. In this study, Dioscorea dumentorum (Family: Dioscoreaceae) Starch (DdS) is co-processed with silicified rice starch (SRS) obtained from Oryza sativa; Family: Poaceae was incorporated as a disintegrant in directly compressed paracetamol tablet formulations in comparison with silicified rice starch and Avicel® as the official standard. Rice and DdS were extracted following standard procedures. The rice starch was silicified using colloidal silicon dioxide and co-processed with DdS in the ratio SRS:DdS (1:2). The DdS, SRS and SRS:DdS (1:2) were characterized using FTIR, particle size, angle of repose, bulk and tapped densities, Hausner ratio and Carr’s index. Paracetamol powder was directly compressed into tablets incorporating the co-processed excipient (SRS:DdS; 1:2) as disintegrants alongside Avicel®, SRS and DdS at varying concentrations (10% w/w, 15% w/w, 20% w/w, 25% w/w). The properties of the tablets were evaluated using friability, crushing strength and disintegration as the assessment parameters. Measurements were made in triplicates and the results were statistically analyzed. The yield of the starches was 41% w/w and 39% w/w for rice starch and DdS respectively. Silicifying the rice starch markedly improved the flow of the starch with a change of Carr’s index and Hausner ratio from 16.7 and 1.32 to 2.33 and 1.02 respectively. Tablets containing Avicel® had better crushing strength and friability values than those containing SRS: 2DdS at all disintegrant concentrations. The disintegration times for Avicel® and SRS: DdS compared favourably at all concentrations of disintegrant and at 15% w/w disintegrant, SRS: DdS showed better disintegrant properties than Avicel®.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Frederick W. A. Owusu ◽  
Mariam E. Boakye-Gyasi ◽  
Philomena Entsie ◽  
Marcel T. Bayor ◽  
Kwabena Ofori-Kwakye

Polymeric materials from plants continue to be of interest to pharmaceutical scientists as potential binders in immediate release tablets due to availability, sustainability, and constant supply to feed local pharmaceutical industries. Paracetamol tablet formulations were utilized in investigating the potential binding characteristics of pectin harnessed from various okra genotypes (PC1-PC5) in Ghana. The pectin yields from the different genotypes ranged from 6.12 to 18.84%w/w. The pH of extracted pectin ranged from 6.39 to 6.92, and it had good swelling indices and a low moisture content. Pectin extracted from all genotypes were evaluated as binders (10, 15, and 20%w/v) and compared to tragacanth BP. All formulated tablets (F1-F18) passed the weight uniformity, drug content, hardness, and friability tests. Based on their crushing strength, tablets prepared with pectin from the various genotypes were relatively harder ( P ≤ 0.05 ) than tablets prepared with tragacanth BP. Tablets prepared with pectins as binders at 10%w/v and 15%w/v passed the disintegration and dissolution tests with the exception of PC4 at 15%w/v. Incorporation of pectin from all genotypes (excluding PC5) as a binder at concentrations above 15%w/v (F13, F16, F14, and F15) produced tablets which failed the disintegration test and showed poor dissolution profiles. Thus, pectin from these genotypes can be industrially commodified as binders in immediate release tablets using varying concentrations.


Author(s):  
Sylvester Okhuelegbe Eraga ◽  
Ogochukwu Augustina Meko ◽  
Magnus Amara Iwuagwu

The physicochemical properties of excipients play vital roles in the process of tablet manufacture. A comparative evaluation of the binding and disintegrant properties of xerogels of cassava and cocoyam starches with microcrystalline cellulose (MCC) in paracetamol tablet formulations was investigated. Cassava and cocoyam starches were extracted from their tubers following standard procedures. Xerogels of both starches were prepared and used to prepare batches of paracetamol granules for direct compression into tablets at concentrations of 3.8, 7.6 and 11.4 %w/w and with 7.6 %w/w MCC for comparison. Granules were analysed for their flow properties and drug-excipient compatibility and the tablets were evaluated for their tablets properties. The paracetamol granules prepared with the xerogel powders were comparable in flow properties with those made with MCC. Differential Scanning Calorimetry and Fourier Transform Infrared analyses revealed no interaction between the xerogel powders and paracetamol. Increase in concentrations of the xerogel powders led to an increase in hardness, wetting time, water sorption, disintegration time, drug release and a decrease in friability of the tablets. Tablets formulated with the starch xerogel powders met compendial requirements at 7.6 %w/w concentration. The study confirms the potentials of xerogels of cassava and cocoyam starches as dry granulation binders/disintegrants. Tablets made with the xerogel powders are superior to those made with MCC in terms of disintegration time but MCC produces harder and less friable tablets, as a superior binder.


2014 ◽  
Vol 27 (3) ◽  
pp. 187-194 ◽  
Author(s):  
Musiliu O. Adedokun ◽  
John O. Ayorinde ◽  
Michael A. Odeniyi

ABSTRACT The binding properties of Eucalyptus gum obtained from the incised trunk of Eucalyptus tereticornis, were evaluated in paracetamol tablet formulations, in comparison with that of Gelatin B.P. In so doing, the compression properties were analyzed using density measurements and the compression equations of Heckel, Kawakita and Gurham. In our work, the mechanical properties of the tablets were assessed using the crushing strength and friability of the tablets, while the drug release properties of the tablets were assessed using disintegration and dissolution times. The results of the study reveal that tablet formulations incorporating Eucalyptus gum as binder, exhibited faster onset and higher amount of plastic deformation during compression than those containing gelatin. What is more, the Gurnham equation could be used as a substitute for the Kawakita equation in describing the compression properties of pharmaceutical tablets. Furthermore, the crushing strength, disintegration and dissolution times of the tablets increased with binder concentration, while friability values decreased. We noted that no significant differences in properties exist between formulations derived from the two binders (p > 0.05) exist. While tablets incorporating gelatin exhibited higher values for mechanical properties, Eucalyptus gum tablets had better balance between mechanical and release properties - as seen from the CSFR/Dt values. Tablets of good mechanical and release properties were prepared using Eucalyptus gum as a binder, and, therefore, it could serve as an alternative binder in producing tablets with good mechanical strength and fast drug release.


2007 ◽  
Vol 57 (1) ◽  
pp. 73-86 ◽  
Author(s):  
Gbenga Alebiowu ◽  
Oludele Itiola

Influence of process variables on release properties of paracetamol tablets A 23 factorial experimental design has been used to quantitatively study individual and interaction effects of the nature of binder (N), binder concentration (c) and relative density of tablet (d) on the disintegration time (DT) and dissolution times, t1, t50 and t90, of paracetamol tablet formulations. The factorial design was also used to study the quantitative effects of pregelatinization of starch binders on these parameters, i.e., N, c and d. In general, the most common ranking of the individual effects on DT, t1, t50 and t90 for native/native, pregelatinized/pregelatinized and native/pregelatinized starch binder formulations was c > d > N. For interaction effects, the most common ranking was N-c > c-d > N-d for all formulations. The results generally showed that c can considerably affect DT, t1, t50 and t90 of the tablets.


2021 ◽  
Vol 20 (1) ◽  
pp. 31-39
Author(s):  
Oluyemisi Adebowale Bamiro ◽  
Aishat Oyinkansola Salisu ◽  
Ese Mary Iyere ◽  
Olatundun Atoyegbe ◽  
Olutayo Ademola Adeleye ◽  
...  

The aim of the work was to characterize chitosan extracted from snail shell and evaluate its use as a disintegrant and binder in metronidazole tablet formulation in comparison with standard chitosan (SC). The mechanical properties were assessed using crushing strength and friability, while the release properties were assessed using disintegration and dissolution times. The extracted chitosan (EC) was crystalline in nature and the scanning electron microscopy (SEM) showed polygonal particles with rough surface. The moisture and swelling capacity was 1.80% and 15.00%, respectively. The densities and flow properties were significantly (p<0.05) higher than those of the SC. As a binder, the crushing strength of formulations containing EC was higher than SC, but both formulation failed friability test. There was significant difference between the disintegration times of the metronidazole formulations containing EC and SC as a disintegrant. The result showed that EC is more effective as a binder in tablet formulations. Dhaka Univ. J. Pharm. Sci. 20(1): 31-39, 2021 (June)


1987 ◽  
Vol 50 (5) ◽  
pp. 372-378 ◽  
Author(s):  
ELLIOT T. RYSER ◽  
ELMER H. MARTH

The ability of Listeria monocytogenes to survive the Camembert cheese-making process and grow during ripening of the cheese was examined. Pasteurized whole milk was inoculated to contain about 500 L. monocytogenes [strain Scott A, V7, California, (CA) or Ohio (OH)] CFU/ml and made into Camembert cheese according to standard procedures. All wheels of cheese were ripened at 6°C following 10 d of storage at 15–16°C to allow proper growth of Penicillium camemberti. Duplicate wedge (pie-shaped), surface and interior cheese samples were analyzed for numbers of L. monocytogenes by surface-plating appropriate dilutions made in Tryptose Broth (TB) on McBride Listeria Agar (MLA). Initial TB dilutions were stored at 3°C and surface-plated on MLA after 2, 4, 6 or 8 weeks if the organism was not quantitated in the original sample. Selected Listeria colonies from duplicate samples were confirmed biochemically. Results showed that numbers of Listeria in cheese increased 5- to 10-fold 24 h after its manufacture. Listeria counts for strains Scott A, CA and OH decreased to &lt;10 to 100 CFU/g in all cheese samples taken during the first 18 d of ripening. In contrast, numbers of strain V7 remained unchanged during this period. All L. monocytogenes strains initiated growth in cheese after 18 d of ripening. Maximum Listeria counts of ca. 1 × 106 to 5 × 107 CFU/g were attained after 65 d of ripening. Generally, a 10- to 100-fold increase in numbers of Listeria occurred in wedge or surface as compared to interior cheese samples taken during the latter half of ripening. During this period, Listeria growth paralleled the increase in pH of the cheese during ripening.


2020 ◽  
Vol 8 (3) ◽  
pp. 232-238
Author(s):  
Dawn C.P. Ambrose

Multiplier onion (Allium cepa L. var aggregatum. Don.) is mainly used for its unique flavour in seasoning dishes. The unpeeled onions are processed at farm level by means of primary processing and by secondary processing various products like paste, flakes, powder could be produced from peeled onions. For the design of processing and handling equipment knowledge of engineering properties is essential. The engineering properties of peeled and unpeeled multiplier onion were determined. The average values of the physical properties of unpeeled onion were recorded for bulk density and true density as 636.621 and 1526.825 kg/m3 respectively. Similarly for peeled onions, the bulk and true density were 627.03 and 1108.74 kg/m3 respectively. The moisture present in peeled and unpeeled onion was 77.66 % and 74.43% (w.b) respectively. The TSS of multiplier onion was found to be 20° Brix for both peeled and unpeeled samples. The colour values were also measured using colour flex meter for the peeled and unpeeled onions. The frictional properties including coefficient of friction, filling and emptying angle of repose were also measured. Mechanical properties were determined by using a texture analyser. The firmness was measured in terms of penetrating force and crushing strength which were recorded to be 8.59 N and 124.93 N respectively for peeled and 12.00 N and 138.35 N respectively for unpeeled onions.


Bio-Research ◽  
2020 ◽  
Vol 18 (1) ◽  
Author(s):  
BB Mohammed ◽  
EJ John ◽  
NK Ajuji

Tablets at present, remain the most preferred oral dosage form because of many advantages they offer to formulators as well as physicians and patients. The objective of this work was to determine the effect of co-processing on the disintegration and drug-release profile of ibuprofen tablets prepared from a co-processed excipient. The co-processed excipient (CE) containing lactose, gelatin and mucin in the ratio 90:9:1 was prepared using co-fusion. The excipient was evaluated for its physicochemical properties and then used to formulate tablets with the addition of a disintegrant by direct compression. The tablets were evaluated for their tablet properties and compared with tablets prepared with cellactose- 80® (CEL) and spray dried lactose® (SDL) and a physical mix (PM) of the co-processed ingredient. Results from evaluation of CE showed that flow rate, angle of repose, Carr’s index and Hausner’s ratio were 5.28 g/sec, 20.30o, 23.75 % and 1.31, respectively. Tablets prepared with CE had friability (0%), crushing strength (5.25) KgF, disintegration time (3 mins) and T50% (2 mins). For CEL, friability (0.4 %), crushing strength (7.25) KgF, disintegration time (1 min) and T50% (2 mins); SDL, friability (1.57 %), crushing strength (7.50) KgF, disintegration time (4 mins) and T50% (2 mins) and PM, friability (2.38 %), crushing strength (5.00) KgF, disintegration time (1 min) and T50% (2 mins). In conclusion, the disintegration time and drug release profile for CE was not superior but compared favorably with CEL, SDL and PM.  


Scientifica ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Frederick William Akuffo Owusu ◽  
Mariam El Boakye-Gyasi ◽  
Jacob Kwaku Agbenorhevi ◽  
Marcel Tunkumgnen Bayor ◽  
Kwabena Ofori-Kwakye

Okra pectin has been studied as a potential excipient in tablet formulations for pharmaceutical industries. Okra is widely grown and available in Ghana and other parts of the world. The prospective use of pectin from okra genotypes grown in Ghana as tablet disintegrants has not been reported. This study aims to determine the potential and comparative disintegrating properties of pectin from five okra genotypes (Abelmoschus esculentus L.) in Ghana using uncoated immediate release paracetamol tablet formulations. The yield of the pectin from the various genotypes ranged between 6.12 and 18.84% w/w. The extracted pectins had pH ranging from slightly acidic to almost neutral (6.39–6.92). Pectin from the various genotypes exhibited good swelling indexes (˃200%), varying solubility in different solvents, and low moisture content (˂20%). Elemental analysis of the extracted pectin from the various genotypes revealed very low levels of toxic metals and micronutrients. Pectin from the various genotypes was evaluated as disintegrants within concentrations of 5–10% w/w (F1–F18). Their disintegrating properties were compared to that of maize starch BP. All the formulated batches of uncoated immediate release paracetamol tablets (F1–F18) passed the following: uniformity of weight test, uniformity of dimensions, hardness, friability (˂1%), and drug content (95–105%). Significant differences ( p ≤ 0.05 ) were observed between the hardness of the maize starch tablets and tablets formulated from pectin of the various genotypes. Pectin from all genotypes other than PC5 exhibited good disintegrating properties (DT ˂ 15 min) and subsequently passed the dissolution profile test (≥70% release in 45 minutes). Tablets formulated with PC5 as disintegrants at all concentrations (5% w/w (F5), 7.5% w/w (F11), and 10% w/w (F17)) failed the disintegration and dissolution tests. Ultimately, pectins extracted from PC1, PC2, PC3, and PC4 can be commercially exploited as disintegrants in immediate release tablets.


1998 ◽  
Vol 12 (2) ◽  
pp. 209-214 ◽  
Author(s):  
Sujatha Sankula ◽  
Michael P. Braverman ◽  
James H. Oard

Reciprocal controlled crosses were made in the greenhouse between Gulfmont rice transformed with the bialaphos resistance (BAR) gene and red rice and BAR-transformed Koshihikari rice and red rice to assess the inheritance of glufosinate resistance. All F1 plants were resistant to 2.2 kg ai/ha glufosinate. Ammonia accumulation as a measure of glufosinate resistance in the F1 hybrids was assayed at 4 and 8 days after treatment (DAT). Ammonia accumulation in hybrids 4 DAT was similar to glufosinate treated, transformed rice, while treated nontransformed plants accumulated 14 to 23 times more ammonia compared with the hybrids. The nature of inheritance of glufosinate resistance in F2 rice plants was studied by a glufosinate dip test, a spray test, and ammonia assay. All three tests confirmed that glufosinate resistance, as influenced by the BAR gene, segregated in a 3 (resistant): 1 (susceptible) ratio.


Sign in / Sign up

Export Citation Format

Share Document