scholarly journals Effect of SiO2 and Al2O3 nanoparticles on wear resistance of PMMA acrylic denture teeth

2020 ◽  
Vol 23 (3) ◽  
Author(s):  
Mohamed A Helal ◽  
Bin Yang ◽  
Esam Saad ◽  
Mohamed Abas ◽  
Mohamed Reda Al-kholy ◽  
...  

Objective: This study aimed to evaluate the wear resistance of acrylic denture teeth containing silicon dioxide (nano-SiO2) and aluminum dioxide (nano-Al2O3) nanoparticles. Material and Methods: Poly methyl methacrylate (PMMA) denture tooth material was used to denture tooth material was used to fabricate 84 specimens (n=10) containing nano-SiO2 and nano-Al2O3 in concentrations 0.1wt%, 0.3wt%, and 0.5wt% of acrylic powder. A two-body wear testing machine and digital microscope were used to measure the changes in weight loss and surface roughness respectively. One-way ANOVA and pair-wise Tukey’s post-hoc tests were used for data analysis (α = 0.05). Results: Nano-SiO2 modified teeth material demonstrated a significant increase in weight loss in comparison conventional artificial acrylic teeth material (p ˂ 0.05) while nano- Al2O3 modified teeth material demonstrated non-significant increase in weight loss except for 0.5% subgroup (p ˂ 0.05). There is no significant differences regarding roughness change after wear simulation among all tested groups (p > 0.05). Conclusion: Nano-Al2O3 nanoparticles exhibit less negative effect than nano-SiO2 so; it could be used with caution if necessary.KeywordsAcrylic denture teeth; Al2O3 nanoparticles; SiO2 nanoparticles; wear resistance; surface roughness.

2016 ◽  
Vol 17 (9) ◽  
pp. 755-761 ◽  
Author(s):  
Abhishek Nagpal ◽  
Gaurav Issar

ABSTRACT Introduction In an attempt to minimize wear damage to the enamel of antagonist teeth, new low and medium fusing ceramic materials have been developed. Manufacturers usually claim that these ceramics are wear-friendly because of their lower hardness, lower concentrations of crystal phase, and smaller crystal sizes. This study aimed to quantitatively analyze the wear strength of various commercially available dental porcelain with tooth enamel as well as the surface hardness of these dental porcelain. Materials and methods The basic model was designed as a pin on plate arrangement. The tooth specimens were mounted on the stylus which was centered on the ceramic specimen in a wear testing machine. The dental ceramic specimen was centered in the metal die. A load of 40 N was applied at a rate of 80 cycles/minute for 15 minutes. In the current study, mean wear depth (Ra) value, volumetric loss, and surface hardness were obtained by standard quantification method and were statistically evaluated. Results Ceramco-3 was reported to be most abrasive for enamel; however, Duceram love significantly more abraded itself than the other two, Ceramco-3 and Vita Alpha, and generated the lowest loss of enamel. Also, same abrasive type of wear was revealed for all three variants of tested ceramics. Conclusion Ceramco-3 was the most abrasive for enamel, while surface roughness (mean wear depth) of Duceram love was maximum and for Ceramco-3 it was minimum. The value of surface roughness for Vita Alpha was in between Duceram love and Ceramco-3. Nonetheless, the mean surface hardness of Duceram love was found to be least and maximum for Vita Alpha. Clinical significance In situations of dental wear and wasting tooth disease (Attrition/Abrasion), Duceram can be applied in lieu of Ceramco-3 so as to prevent worsening of existing dentition. However, in younger patients Vita Alpha would offer maximum durability due to its greater surface hardness. How to cite this article Singh A, Nagpal A, Pawah S, Pathak C, Issar G, Sharma P. Qualitative Assessment of Wear Resistance and Surface Hardness of Different Commercially Available Dental Porcelain: An in vitro Study. J Contemp Dent Pract 2016; 17(9):755-761.


2014 ◽  
Vol 896 ◽  
pp. 706-709 ◽  
Author(s):  
Naphatara Intanon ◽  
Charnnarong Saikaew ◽  
Parinya Srisattayakul

A hook is an important fishing net-weaving machine component that is used for making fishing net. During the production of fishing net, nylon fiber is in continuous contact with the hooks by sliding on the inner curve of the hooks that results in wear on the hooks. Weight loss of the hooks as the wear resistance measurement was collected to investigate the surface quality of the hooks. Presently, a wear testing machine for a fishing net-weaving machine component is not available for wear resistance study. Thus this work aimed to design and fabricate a wear testing machine that has a mechanism as similar to the actual working conditions as possible and so can provide accurate testing data. It has been proven that the wear testing machine built as a result of this study gave wear testing results extremely similar to those when testing on the actual fishing net-weaving machine.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Recep Demirsöz ◽  
Mehmet Erdl Korkmaz ◽  
Munish Kumar Gupta ◽  
Alberto Garcia Collado ◽  
Grzegorz M. Krolczyk

Purpose The main purpose of this work is to explore the erosion wear characteristics of additively manufactured aluminium alloy. Additive manufacturing (AM), also known as three-dimensional (3D) manufacturing, is the process of manufacturing a part designed in a computer environment using different types of materials such as plastic, ceramic, metal or composite. Similar to other materials, aluminum alloys are also exposed to various wear types during operation. Production efficiency needs to be aware of its reactions to wearing mechanisms. Design/methodology/approach In this study, quartz sands (SiO2) assisted with oxide ceramics were used in the slurry erosion test setup and its abrasiveness on the AlSi10Mg aluminum alloy material produced by the 3D printer as selective laser melting (SLM) technology was investigated. Quartz was sieved with an average particle size of 302.5 µm, and a slurry environment containing 5, 10 and 15% quartz by weight was prepared. The experiments were carried out at the velocity of 1.88 (250 rpm), 3.76 (500 rpm) and 5.64 m/s (750 rpm) and the impact angles 15, 45 and 75°. Findings With these experimental studies, it has been determined that the abrasiveness of quartz sand prepared in certain particle sizes is directly related to the particle concentration and particle speed, and that the wear increases with the increase of the concentration and rotational speed. Also, the variation of weight loss and surface roughness of the alloy was investigated after different wear conditions. Surface roughness values at 750 rpm speed, 10% concentration and 75° impingement angle are 0.32 and 0.38 µm for 0 and 90° samples, respectively, with a difference of approximately 18%. Moreover, concerning a sample produced at 0°, the weight loss at 250 rpm at 10% concentration and 45° particle impact angle is 32.8 mg, while the weight loss at 500 rpm 44.4 mg, and weight loss at 750 rpm is 104 mg. Besides, the morphological structures of eroded surfaces were examined using the scanning electron microscope to understand the wear mechanisms. Originality/value The researchers verified that this specific coating condition increases the slurry wear resistance of the mentioned steel. There are many studies about slurry wear tests; however, there is no study in the literature about the quartz sand (SiO2) assisted slurry-erosive wear of AlSi10Mg alloy produced with AM by using SLM technology. This study is needed to fill this gap in the literature and to examine the erosive wear capability of this current material in different environments. The novelty of the study is the use of SiO2 quartz sands assisted by oxide ceramics in different concentrations for the slurry erosion test setup and the investigations on erosive wear resistance of AlSi10Mg alloy manufactured by AM.


2012 ◽  
Vol 557-559 ◽  
pp. 1533-1538 ◽  
Author(s):  
Shao Ling Xia ◽  
Lin Qi Zhang ◽  
Dong Mei Wang ◽  
Wen Jun Zou ◽  
Jin Peng ◽  
...  

Tribology behavior of Nanodiamond(ND) polyurethane(PU)/epoxy(EP) interpenetrating polymer networks hybrid materials were tested by friction wear testing machine. Results showed that when EP content was 30%, resultant PU/EP IPNs exhibited best wear resistance. For ND-PU/EP IPNs hybrids, when the ND addition was 0.2wt%, the best wear resistant ability was obtained. Under dry condition, the effect of wear parameters, such as rotational speed, load and central distance to friction and abrasion value were also investigated.


2019 ◽  
Vol 3 (2) ◽  

Aim: The purpose of this invitro study was to evaluate wear resistance and surface roughness of two hybrid ceramics in comparison to lithium disilicate glass ceramic before and after mechanical abrasion. Materials and Methods: Thirty samples were divided according to material of construction into three groups, group (1): Lithium disilicate glass ceramic (IPS e.max, n=10), group (2): Resin nanoceramic (Lava Ultimate, n=10), group (3): Polymer infiltrated ceramic (Vita Enamic, n=10). All samples were fabricated out of CAD CAM ceramic blocks, weighed and evaluated for surface roughness before and after mechanical wear. Results: Resin nanoceramic (Lava ultimate), showed significantly low weight loss and surface roughness change after mechanical wear than IPS e.max. The polymer infiltrated ceramic (Vita Enamic) showed significantly high surface roughness than Resin nanoceramic (Lava ultimate), while IPS e.max showed the highest weight loss and surface roughness change. Conclusion: Resin nanoceramics revealed highest mechanical wear resistance contributed by terms of weight loss and surface roughness change, while Lithium disilicate glass ceramic showed the least wear resistance.


2020 ◽  
Vol 10 (7) ◽  
pp. 1079-1090 ◽  
Author(s):  
Gulam Mohammed Sayeed Ahmed ◽  
Irfan Anjum Badruddin ◽  
Vineet Tirth ◽  
Ali Algahtani ◽  
Mohammed Azam Ali

This work presents wear study on maraging steel developed by additive manufacturing using Direct Metal Laser Sintering, utilizing a laser beam of high-power density for melting and fusing the metallic powders. Short aging treatment was given to the specimen prior to the wear tests. The density and the hardness of the 3D printed maraging steel were found to be better than the homogenized-aged 18Ni1900 maraging steel. The wear resistance is an important aspect that influences the functionality of the components. The wear tests in dry condition were performed on maraging steel on pin/disc standard wear testing machine. The design of experiments was planned and executed based on response surface methodology. This technique is employed to investigate three influencing and controlling constraints namely speed, load, and distance of sliding. It has been observed that sliding speed and normal load significantly affects the wear of the specimen. The statistical optimization confirms that the normal load, sliding distance, and speed are significant for reducing the wear rate. The confirmation test was conducted with a 95% confidence interval using optimal parameters for validation of wear test results. A mathematical model was developed to estimate the wear rate. The experimental results were matched with the projected values. The wear test parameters for minimum and maximum wear rate have been determined.


Coatings ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 265 ◽  
Author(s):  
Lin Zong ◽  
Ning Guo ◽  
Rongguang Li ◽  
Hongbing Yu

The Fe-3Ti-xB-4C (x = 1.71, 3.42, 5.10, 6.85 wt. %) hardfacing alloys are deposited on the surface of a low-carbon steel by plasma transferred arc (PTA) weld-surfacing process. Microstructure, hardness and wear resistance have been investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), Rockwell hardness tester and abrasive wear testing machine, respectively. The results show that the microstructure in all alloys is composed of austenite, martensite, Fe23(C,B)6, Ti(C,B) and Fe2B. The volume fraction of eutectic borides and Ti(C,B) carbides increases with increasing B content. Many brittle bulk Fe2B phase arises when the boron content increases to 6.85%, which causes the formation of microcracks in the hardfacing layer. The microhardness of the hardfacing alloys is significantly improved with the B addition, however, the wear resistance of hardfacing alloys increases firstly and then decreases with increasing of B content. The hardfacing alloy with the 5.10% B content has the best wear resistance, which is attributed to high volume fraction of eutectic borides and fine Ti(C,B) particles distributed in the austenite and lath martensite matrix with high hardness and toughness. The formation of brittle bulk Fe2B particles in the hardfacing alloy with the 6.85% B leads to the fracture and spalling of hard phases during wear, thus, reducing the wear resistance.


Author(s):  
M. Vijaya ◽  
K. Srinivas ◽  
N.B.Prakash Tiruveedula

Using stir-casting, the hybrid aluminium metal matrix composites are prepared with the reinforcement of SiC and graphite particulates by varying equally 2%, 4%, 6%, and 8% by weight. The wear and frictional force for the prepared specimens were investigated through pin on disc wear testing machine. Exercising ANOVA technique, the wear rate and coefficient of friction was accomplished with the impact of applied load, sliding speed and sliding distance. Using Taguchi technique, experiments have been performed depending on the design of experiments. For analysis of data L9 Orthogonal array was preferred. Wear resistance and frictional force were influenced majorly with the reinforcement of graphite. The morphology of the depleted surfaces and the wear fragments were analysed to recognize the wear property. Distinguished to other percentages of reinforcements, 6% wt. of SiC and 6% wt. of graphite has demonstrated high wear resistance.


2020 ◽  
Vol 15 (4) ◽  
Author(s):  
Venkat Kishore N ◽  
Nagendra M ◽  
Venkateswara Rao T

The use of ion implantation as a surface treatment technology has been conquered by its applications to prevent wear and oxidation in metal alloys, even though some early works already pointed out that ion implantation could also be effective as a surface treatment for other materials, including polymers. Further research has shown that low dose implantation of energetic light ions could be very effective for improving properties such as wear resistance and hardness in many different polymers. Cross linking of polymeric chains due to ionization energy provided by the stopping process is the main mechanism to explain the changes in mechanical properties. According to this model the lighter the ion is, the stronger is the effect. This thesis presents the results obtained by nitrogen implantation in ultra-high molecular weight polyethylene (UHMWPE). N+ ions were implanted at 80 keV, 100 keV and 120 keV energy levels which are maintained at a fluencies or dose of 5×1015 ions/cm2 . Wear resistance was measured using pin-on-disc wear testing machine at a constant load of 18 kg or 177N with a sliding speed of 2 m/s for about 1000m sliding distance. The results clearly show a lower weight and volume loses for samples implanted with nitrogen, in comparison to those implanted with untreated samples. Hence from the results of weight and volume loses of the treated or implanted samples with nitrogen ion, gives very good wear resistance than untreated samples.


2014 ◽  
Vol 490-491 ◽  
pp. 29-33 ◽  
Author(s):  
Wen Bo Tang ◽  
Cong Hui Lu ◽  
Yan Peng Li

TiCp/Al composites coating was in-situ synthesized on the L1060 alloy surface by TIG cladding. The microstructure and the phase of the coating were analyzed by OM, SEM, ADS and XRD, and the properties was been tested by micro-hardnessmeter and wear testing machine. The results show that the composite coating has no porosity, inclusions and other defects. The microstructure of the composite coating mainly consists of TiC particle and aluminum. Microstructural evidence suggests that the formation of TiC occur not only by reaction between Ti dissolved in Al and Al4C3, but also by reaction between C dissolved in Al and Al3Ti. The hardness of the composite coating obtained by TIG cladding is up to 120HV0.2. The wear resistance of composite coating is 1.6 times more than that of the matrix.


Sign in / Sign up

Export Citation Format

Share Document