scholarly journals Nitrogen use efficiency as a tool to evaluate the development of ornamental cacti species

2017 ◽  
Vol 23 (4) ◽  
pp. 419-425
Author(s):  
Karina Gonçalves da Silva ◽  
Mauricio Lamano Ferreira ◽  
Teresa Jocys ◽  
Shoey Kanashiro ◽  
Armando Reis Tavares

Nitrogen efficiency, along with associated indexes, is a widely used tool for assessing nutritional status in agricultural species. However, this parameter is not used in studies with ornamental plants, especially epiphytic cacti species. In particular, we know very little about the potential response of ornamental cacti to N absorption and use. Therefore, this study aimed to evaluate N use efficiency (NUE), along with its associated parameters, in three species of ornamental cacti under nitrogen nutrition. To accomplish this, Rhipsalis baccifera, Rhipsalis paradoxa and Hatiora salicornioides were fertilized by Hogland and Arnon nutrition solution modified and enriched with urea in the concentrations of 0, 33.3 or 66.6 mM N during 180 days. At the end of the experiment, efficiency indexes were calculated. Efficiency parameters varied according to species. R. baccifera presented the greatest dissimilarity among the species, with highest uptake efficiency (NUpE), but lowest use efficiency (NUtE) and biomass conversion (BCE). R. paradoxa presented high values for NUE, NUtE, BCE and physiological efficiency (NPE) at concentrations of 33.3 mM N, suggesting greater investment in biological processes with lower supply of N. H. salicornioides had the highest averages in most parameters measured. Our results show that these indexes provided important comparative baseline information on nutritional status and investment strategy, thus serving as a suitable analytical tool to increase knowledge about this group of ornamental plants.

2018 ◽  
Vol 53 (6) ◽  
pp. 703-709 ◽  
Author(s):  
Karina Gonçalves da Silva ◽  
Mauricio Lamano Ferreira ◽  
Emerson Alves da Silva ◽  
Shoey Kanashiro ◽  
Plínio Barbosa de Camargo ◽  
...  

Abstract: The objective of this work was to evaluate if nitrogen use efficiency (NUE) indexes can elucidate functional differences in nutrient uptake between the root system and tank of epiphytic bromeliads. The bromeliads Guzmania lingulata and Vriesea 'Harmony' received fertilizers in their tanks or through their roots using modified Hoagland & Arnon solution, with 0.00, 2.62, or 5.34 mmol L-1 nitrogen, as urea. After 90 days, nitrogen contents in leaves and plant biomass were evaluated, and NUE indexes were calculated. Guzmania lingulata and V. 'Harmony' fertilized in their tanks with 5.34 mmol L-1 had the highest averages of nitrogen uptake efficiency and recovery efficiency; those fertilized with 2.62 mmol L-1 through their roots showed the highest averages of NUE, nitrogen utilization efficiency, nitrogen physiological efficiency, and biomass conversion efficiency. The NUE indexes, besides being an effective tool to assess the nutritional status of ornamental bromeliads, reveal that the root system of epiphytic bromeliads is functional for nitrogen uptake and use.


Author(s):  
Osmar B. Scremin ◽  
José A. G. da Silva ◽  
Ângela T. W. de Mamann ◽  
Rubia D. Mantai ◽  
Ana P. Brezolin ◽  
...  

ABSTRACT The retainers of water in the soil can favor nitrogen (N) use efficiency in oat yield. The aim of the study was to determine if the conditions of use of the biopolymer hydrogel increase the fertilizer-N use efficiency in oat yield in succession systems of high and low residual-N release. In each succession system (soybean/oat, corn/oat), two experiments were conducted in 2014 and 2015, one to quantify biomass yield and the other to estimate grain yield and lodging. The design was randomized blocks with four replicates in a 4 x 4 factorial scheme for hydrogel doses (0, 30, 60 and 120 kg ha-1), added in the furrow with the seed, and N fertilizer doses (0, 30, 60 and 120 kg ha-1) applied in the fourth-expanded-leaf stage. The use of hydrogel increases N use efficiency in oat yield, especially under the conditions of 30 to 60 kg ha-1 of biopolymer; however, this effect is dependent on the succession system and on weather conditions.


2021 ◽  
Author(s):  
Regina Gratz ◽  
Iftikhar Ahmad ◽  
Henrik Svennerstam ◽  
Sandra Jämtgård ◽  
Jonathan Love ◽  
...  

Abstract The contribution of amino acids (AAs) to soil nitrogen (N) fluxes is higher than previously thought. The fact that AA uptake is pivotal for N nutrition in boreal ecosystems highlights plant AA transporters as key components of the N cycle. At the same time, very little is known about AA transport and respective transporters in trees. Tree genomes may contain thirteen or more genes encoding the LYSINE HISTIDINE TRANSPORTER (LHT) family proteins, and this complicates the study of their significance for tree N use efficiency. With the strategy of obtaining a tool to study N use efficiency, our aim was to identify and characterize a relevant AA transporter in hybrid aspen (Populus tremula L. x tremuloides Michx.). We identified PtrLHT1.2, the closest homolog of Arabidopsis thaliana AtLHT1, which is expressed in leaves, stems and roots. Complementation of a yeast AA uptake mutant verified the function of PtrLHT1.2 as an AA transporter. Furthermore, PtrLHT1.2 was able to fully complement the phenotypes of the Arabidopsis AA uptake mutant lht1 aap5, including early leaf senescence-like phenotype, reduced growth, decreased plant N levels and reduced root AA uptake. AA uptake studies finally showed that PtrLHT1.2 is a high affinity transporter for neutral and acidic AAs. Thus, we identified a functional AtLHT1 homolog in hybrid aspen, which harbors the potential to enhance overall plant N levels and hence increase biomass production. This finding provides a valuable tool for N nutrition studies in trees and opens new avenues to optimizing tree N use efficiency.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11834
Author(s):  
Baizhao Ren ◽  
Juan Hu ◽  
Peng Liu ◽  
Bin Zhao ◽  
Jiwang Zhang

Waterlogging was one of the main abiotic stresses affecting maize yield and growth in the North China Plain, while ridge tillage effectually improved soil environment, enhanced crop stress resistance to waterlogging, and increased grain yield of waterlogged maize. In order to explore the responses of nitrogen (N) efficiency and antioxidant system of summer maize to waterlogging stress under different tillage, a field experiment was conducted to explore N use efficiency, leaf activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and malondialdehyde (MDA) content of waterlogged maize Denghai 605 (DH605) and Zhengdan 958 (ZD958) under different tillage system (ridge planting and flat planting). Our results showed that ridge tillage was beneficial to ameliorate waterlogging damages on antioxidant system by increasing SOD, POD, and CAT activities, and decreasing MDA content. Moreover, ridge tillage significantly increased N efficiency of waterlogged maize. N translocation amount (NTA), N translocation efficiency (NTE), N contribution proportion (NCP), N harvest index (NHI), and N use efficiency (NUE) of waterlogging treatment under ridge planting system (W-V3+R) for DH605 was increased by 108%, 69%, 60%, 8% and 16%, while ZD958 increased by 248%, 132%, 146%, 13% and 16%, respectively, compared to those of waterlogging treatment under flat planting system (W-V3). Ultimately, ridge tillage led to a significant yield improvement by 39% and 50% for DH605 and ZD958, respectively, compared to that of W-V3. In conclusion, ridge tillage was conducive to retard leaf aging, and enhance nitrogen efficiency, thereby resulting in a yield improvement of waterlogged summer maize.


Author(s):  
José A. G. da Silva ◽  
Constantino J. Goi Neto ◽  
Sandra B. V. Fernandes ◽  
Rubia D. Mantai ◽  
Osmar B. Scremin ◽  
...  

ABSTRACT Nitrogen (N) is the nutrient most absorbed by the oat crop. Unfavorable climate conditions decrease its efficiency, generating instability and reduction in yield. The objective of this study was to improve N use efficiency in oat grain yield by the economic value of the product and of the input and by models that scale the stability, considering systems of succession of high and reduced residual-N release in favorable and unfavorable years for cultivation. The study was conducted in the years 2013, 2014 and 2015 in two systems of succession (soybean/oat, maize/oat) in randomized blocks with eight replicates, using the N-fertilizer doses of 0, 30, 60 and 120 kg ha-1. The N-fertilizer dose for maximum economic efficiency in oats should be considered based on the meteorological trends of the cultivation year. N use optimization by models that determine the stability is an innovative proposal to increase fertilization efficiency on the yield. The N-fertilizer dose of 60 kg ha-1 promotes greater efficiency with predictability and yield, regardless of the agricultural year and the system of succession.


2020 ◽  
Vol 51 (4) ◽  
pp. 1139-1148
Author(s):  
Othman & et al.

The research work was conducted in Izra’a Research station, which affiliated to the General Commission for Scientific Agricultural Research (GCSAR), during the growing seasons (2016 – 2017; 2017 – 2018), in order to evaluate the response of two durum wheat verities (Douma3 and Cham5) and two bread wheat varieties (Douma4 and Cham6) to Conservation Agriculture (CA) as a full package compared with Conventional Tillage system (CT) under rainfed condition using lentils (Variety Edleb3) in the applied crop rotation. The experiment was laid according to split-split RCBD with three replications. The average of biological yield, grain yield,  rainwater use efficiency and nitrogen use efficiency was significantly higher during the first growing season, under conservation agriculture in the presence of crop rotation, in the variety Douma3 (7466 kg. ha-1, and 4162kg. ha-1, 19.006 kg ha-1 mm-1,  39.62 kg N m-2respectively). The two varieties Douma3 and Cham6 are considered more responsive to conservation agriculture system in the southern region of Syria, because they recorded the highest grain yields (2561, 2385 kg ha-1 respectively) compared with the other studied varieties (Cham5 and Douma4) (1951 and 1724 kg ha-1 respectively). They also exhibited the highest values of both rainwater and nitrogen use efficiency.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 515
Author(s):  
Ying Ouyang ◽  
Gary Feng ◽  
Heidi Renninger ◽  
Theodor D. Leininger ◽  
Prem Parajuli ◽  
...  

Eucalyptus is one of the fastest growing hardwoods for bioenergy production. Currently, few modeling tools exist to simultaneously estimate soil hydrological processes, nitrogen (N) uptake, and biomass production in a eucalyptus plantation. In this study, a STELLA (Structural Thinking and Experiential Learning Laboratory with Animation)-based model was developed to meet this need. After the model calibration and validation, a simulation scenario was developed to assess eucalyptus (E. grandis × urophylla) annual net primary production (ANPP), woody biomass production (WBP), water use efficiency (WUE), and N use efficiency (NUE) for a simulation period of 20 years. Simulation results showed that a typical annual variation pattern was predicted for water use, N uptake, and ANPP, increasing from spring to fall and decreasing from fall to the following winter. Overall, the average NUE during the growth stage was 700 kg/kg. To produce 1000 kg eucalyptus biomass, it required 114.84 m3 of water and 0.92 kg of N. This study suggests that the STELLA-based model is a useful tool to estimate ANPP, WBP, WUE, and NUE in a eucalyptus plantation.


Sign in / Sign up

Export Citation Format

Share Document