scholarly journals A QUANTITATIVE EVALUATION OF THE WATER DISTRIBUTION IN A SOIL SAMPLE USING NEUTRON IMAGING

2016 ◽  
Vol 56 (5) ◽  
pp. 388-394 ◽  
Author(s):  
Jan Šácha ◽  
Michal Sněhota ◽  
Jan Hovind

This paper presents an empirical method by Kang et al. recently proposed for correcting two-dimensional neutron radiography for water quantification in soil. The method was tested on data from neutron imaging of the water infiltration in a soil sample. The raw data were affected by neutron scattering and by beam hardening artefacts. Two strategies for identifying the correction parameters are proposed in this paper. The method has been further developed for the case of three-dimensional neutron tomography. In a related experiment, neutron imaging is used to record ponded-infiltration experiments in two artificial soil samples. Radiograms, i.e., two-dimensional projections of the sample, were acquired during infiltration. A calculation was made of the amount of water and its distribution within the radiograms, in the form of two-dimensional water thickness maps. Tomograms were reconstructed from the corrected and uncorrected water thickness maps to obtain the 3D spatial distribution of the water content within the sample. Without the correction, the beam hardening and the scattering effects overestimated the water content values close to the perimeter of the sample, and at the same time underestimated the values close to the centre of the sample. The total water content of the entire sample was the same in both cases. The empirical correction method presented in this study is a relatively accurate, rapid and simple way to obtain the quantitatively determined water content from two-dimensional and three-dimensional neutron images. However, an independent method for measuring the total water volume in the sample is needed in order to identify the correction parameters.

2006 ◽  
Vol 43 (5) ◽  
pp. 449-461 ◽  
Author(s):  
Qun Chen ◽  
L M Zhang

The Gouhou Dam was a concrete-faced rockfill dam built in a steep canyon that collapsed in 1993 due to internal erosion during the initial reservoir filling. In this paper, the process of water infiltration into the originally unsaturated rockfill dam is studied using three-dimensional saturated–unsaturated seepage theory. The three-dimensional characteristics of seepage through the dam bounded by steep abutments, the effect of material anisotropy, and the effect of rockfill stratifications are studied. The three-dimensional results are compared with those from two-dimensional analyses. The three-dimensional simulations show that seepage water flows faster and the hydraulic gradients are greater near the abutment boundary in the dam. As such, the evolution of the seepage failure in the three-dimensional cases is faster than that in the two-dimensional analyses, and the two-dimensional analyses will underestimate the risk of seepage failure, particularly near the abutment boundary. If the materials in the dam were uniform, the reservoir water would infiltrate into the dam along a downward flow path towards the riverbed, and not exit from the surface on the downstream slope. Increasing the horizontal coefficient of permeability of the rockfill increases the infiltration velocity, but the material anisotropy does not appreciably change the infiltration pattern. Stratifications in the rockfill, however, cause the seepage water to advance more quickly in the horizontal direction along the interface between the sandwich layer and the rockfill, thus increasing the possibility of seepage failure.Key words: seepage, seepage failure, rockfill dam, unsaturated soils, wetting front, numerical analysis.


2012 ◽  
Vol 16 (11) ◽  
pp. 4361-4372 ◽  
Author(s):  
X. Pan ◽  
J. Zhang ◽  
P. Huang ◽  
K. Roth

Abstract. We explore the feasibility to quantify the field-scale soil water dynamics through time series of GPR (ground-penetrating radar) measurements, which bridge the gap between point measurements and field measurements. Working on a 40 m × 50 m area in a heterogeneous agricultural field, we obtain a time series of radargrams after a heavy rainfall event. The data are analysed to simultaneously yield (i) a three-dimensional representation of the subsurface architecture and (ii) the total soil water volume between the surface and a reflection boundary associated with the presence of paleo sand dunes or clay inclusions in a rather uniform sand matrix. We assess the precision and the accuracy of these quantities and conclude that the method is sensitive enough to capture the spatial structure of the changing soil water content in a three-dimensional heterogeneous soil during a short-duration infiltration event. While the sensitivity of the method needs to be improved, it already produced useful information to understand the observed patterns in crop height and it yielded insight into the dynamics of soil water content at this site including the effect of evaporation.


Author(s):  
H.A. Cohen ◽  
T.W. Jeng ◽  
W. Chiu

This tutorial will discuss the methodology of low dose electron diffraction and imaging of crystalline biological objects, the problems of data interpretation for two-dimensional projected density maps of glucose embedded protein crystals, the factors to be considered in combining tilt data from three-dimensional crystals, and finally, the prospects of achieving a high resolution three-dimensional density map of a biological crystal. This methodology will be illustrated using two proteins under investigation in our laboratory, the T4 DNA helix destabilizing protein gp32*I and the crotoxin complex crystal.


Author(s):  
B. Ralph ◽  
A.R. Jones

In all fields of microscopy there is an increasing interest in the quantification of microstructure. This interest may stem from a desire to establish quality control parameters or may have a more fundamental requirement involving the derivation of parameters which partially or completely define the three dimensional nature of the microstructure. This latter categorey of study may arise from an interest in the evolution of microstructure or from a desire to generate detailed property/microstructure relationships. In the more fundamental studies some convolution of two-dimensional data into the third dimension (stereological analysis) will be necessary.In some cases the two-dimensional data may be acquired relatively easily without recourse to automatic data collection and further, it may prove possible to perform the data reduction and analysis relatively easily. In such cases the only recourse to machines may well be in establishing the statistical confidence of the resultant data. Such relatively straightforward studies tend to result from acquiring data on the whole assemblage of features making up the microstructure. In this field data mode, when parameters such as phase volume fraction, mean size etc. are sought, the main case for resorting to automation is in order to perform repetitive analyses since each analysis is relatively easily performed.


Author(s):  
Yu Liu

The image obtained in a transmission electron microscope is the two-dimensional projection of a three-dimensional (3D) object. The 3D reconstruction of the object can be calculated from a series of projections by back-projection, but this algorithm assumes that the image is linearly related to a line integral of the object function. However, there are two kinds of contrast in electron microscopy, scattering and phase contrast, of which only the latter is linear with the optical density (OD) in the micrograph. Therefore the OD can be used as a measure of the projection only for thin specimens where phase contrast dominates the image. For thick specimens, where scattering contrast predominates, an exponential absorption law holds, and a logarithm of OD must be used. However, for large thicknesses, the simple exponential law might break down due to multiple and inelastic scattering.


Author(s):  
D. E. Johnson

Increased specimen penetration; the principle advantage of high voltage microscopy, is accompanied by an increased need to utilize information on three dimensional specimen structure available in the form of two dimensional projections (i.e. micrographs). We are engaged in a program to develop methods which allow the maximum use of information contained in a through tilt series of micrographs to determine three dimensional speciman structure.In general, we are dealing with structures lacking in symmetry and with projections available from only a limited span of angles (±60°). For these reasons, we must make maximum use of any prior information available about the specimen. To do this in the most efficient manner, we have concentrated on iterative, real space methods rather than Fourier methods of reconstruction. The particular iterative algorithm we have developed is given in detail in ref. 3. A block diagram of the complete reconstruction system is shown in fig. 1.


Author(s):  
A.M. Jones ◽  
A. Max Fiskin

If the tilt of a specimen can be varied either by the strategy of observing identical particles orientated randomly or by use of a eucentric goniometer stage, three dimensional reconstruction procedures are available (l). If the specimens, such as small protein aggregates, lack periodicity, direct space methods compete favorably in ease of implementation with reconstruction by the Fourier (transform) space approach (2). Regardless of method, reconstruction is possible because useful specimen thicknesses are always much less than the depth of field in an electron microscope. Thus electron images record the amount of stain in columns of the object normal to the recording plates. For single particles, practical considerations dictate that the specimen be tilted precisely about a single axis. In so doing a reconstructed image is achieved serially from two-dimensional sections which in turn are generated by a series of back-to-front lines of projection data.


Author(s):  
Douglas L. Dorset ◽  
Andrew K. Massalski

Matrix porin, the ompF gene product of E. coli, has been the object of a electron crystallographic study of its pore geometry in an attempt to understand its function as a membrane molecular sieve. Three polymorphic forms have been found for two-dimensional crystals reconstituted in phospholipid, two hexagonal forms with different lipid content and an orthorhombic form coexisting with and similar to the hexagonal form found after lipid loss. In projection these have been shown to retain the same three-fold pore triplet geometry and analyses of three-dimensional data reveal that the small hexagonal and orthorhombic polymorphs have similar structure as well as unit cell spacings.


Author(s):  
Jeffry A. Reidler ◽  
John P. Robinson

We have prepared two-dimensional (2D) crystals of tetanus toxin using procedures developed by Uzgiris and Kornberg for the directed production of 2D crystals of monoclonal antibodies at an antigen-phospholipid monolayer interface. The tetanus toxin crystals were formed using a small mole fraction of the natural receptor, GT1, incorporated into phosphatidyl choline monolayers. The crystals formed at low concentration overnight. Two dimensional crystals of this type are particularly useful for structure determination using electron microscopy and computer image refinement. Three dimensional (3D) structural information can be derived from these crystals by computer reconstruction of photographs of toxin crystals taken at different tilt angles. Such 3D reconstructions may help elucidate the mechanism of entry of the enzymatic subunit of toxins into cells, particularly since these crystals form directly on a membrane interface at similar concentrations of ganglioside GT1 to the natural cellular receptors.


Author(s):  
José L. Carrascosa ◽  
José M. Valpuesta ◽  
Hisao Fujisawa

The head to tail connector of bacteriophages plays a fundamental role in the assembly of viral heads and DNA packaging. In spite of the absence of sequence homology, the structure of connectors from different viruses (T4, Ø29, T3, P22, etc) share common morphological features, that are most clearly revealed in their three-dimensional structure. We have studied the three-dimensional reconstruction of the connector protein from phage T3 (gp 8) from tilted view of two dimensional crystals obtained from this protein after cloning and purification.DNA sequences including gene 8 from phage T3 were cloned, into Bam Hl-Eco Rl sites down stream of lambda promotor PL, in the expression vector pNT45 under the control of cI857. E R204 (pNT89) cells were incubated at 42°C for 2h, harvested and resuspended in 20 mM Tris HC1 (pH 7.4), 7mM 2 mercaptoethanol, ImM EDTA. The cells were lysed by freezing and thawing in the presence of lysozyme (lmg/ml) and ligthly sonicated. The low speed supernatant was precipitated by ammonium sulfate (60% saturated) and dissolved in the original buffer to be subjected to gel nitration through Sepharose 6B, followed by phosphocellulose colum (Pll) and DEAE cellulose colum (DE52). Purified gp8 appeared at 0.3M NaCl and formed crystals when its concentration increased above 1.5 mg/ml.


Sign in / Sign up

Export Citation Format

Share Document