scholarly journals Variation detection and respondents’ feedback: the cause, effect, and solution of oil spills.

2018 ◽  
Vol 17 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Ayodele Sunday Tologbonse ◽  
Esther Oluwafunmilayo Makinde

Centred on occurrences of pipeline explosion and oil spills in a host community; a supervised classification technique, of land use/land cover variation detection was carried-out, with Landsat imageries of three time intervals, to determine the percentage of variation between the time intervals. Also carried-out, was a random sampling of questionnaires; dispatch to acquire respondents’ feedback. It addressed respondents’ demographic and social-economic composition of the sample population, the perception on the cause and the impact, and the effect of the oil spill and finally considered the possible solutions. Information was subjected to descriptive analysis and an F-test statistical analysis in a 95% confidence interval. Reports showed that land use/land cover classification had undergone series of percentage variation within the time interval considered, indicating ‘remarks’ of a rise or a decline. While, the measure of insecurity (of about 36.7%) is a prevailing element to the unceasing attack on oil pipelines and only a sustaining security measure (of about 40.8%) will evidently pave a way-out. Wherefore advocating for community based policing, and a comprehensive technological sensor system, for monitoring of oil pipelines/facilities across the Nation.

Author(s):  
Qijiao Xie ◽  
Qi Sun

Aerosols significantly affect environmental conditions, air quality, and public health locally, regionally, and globally. Examining the impact of land use/land cover (LULC) on aerosol optical depth (AOD) helps to understand how human activities influence air quality and develop suitable solutions. The Landsat 8 image and Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol products in summer in 2018 were used in LULC classification and AOD retrieval in this study. Spatial statistics and correlation analysis about the relationship between LULC and AOD were performed to examine the impact of LULC on AOD in summer in Wuhan, China. Results indicate that the AOD distribution expressed an obvious “basin effect” in urban development areas: higher AOD values concentrated in water bodies with lower terrain, which were surrounded by the high buildings or mountains with lower AOD values. The AOD values were negatively correlated with the vegetated areas while positively correlated to water bodies and construction lands. The impact of LULC on AOD varied with different contexts in all cases, showing a “context effect”. The regression correlations among the normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), normalized difference water index (NDWI), and AOD in given landscape contexts were much stronger than those throughout the whole study area. These findings provide sound evidence for urban planning, land use management and air quality improvement.


2012 ◽  
Vol 49 (5) ◽  
pp. 980-989 ◽  
Author(s):  
S. Bajocco ◽  
A. De Angelis ◽  
L. Perini ◽  
A. Ferrara ◽  
L. Salvati

Hydrology ◽  
2018 ◽  
Vol 6 (1) ◽  
pp. 2 ◽  
Author(s):  
Kinati Chimdessa ◽  
Shoeb Quraishi ◽  
Asfaw Kebede ◽  
Tena Alamirew

In the Didessa river basin, which is found in Ethiopia, the human population number is increasing at an alarming rate. The conversion of forests, shrub and grasslands into cropland has increased in parallel with the population increase. The land use/land cover change (LULCC) that has been undertaken in the river basin combined with climate change may have affected the Didessa river flow and soil loss. Therefore, this study was designed to assess the impact of LULCC on the Didessa river flow and soil loss under historical and future climates. Land use/land cover (LULC) of the years 1986, 2001 and 2015 were independently combined with the historical climate to assess their individual impacts on river flow and soil loss. Further, the impact of future climates under Representative Concentration Pathways (RCP2.6, RCP4.5 and RCP8.5) scenarios on river flow and soil loss was assessed by combining the pathways with the 2015 LULC. A physically based Soil and Water Assessment Tool (SWAT2012) model in the ArcGIS 10.4.1 interface was used to realize the purpose. Results of the study revealed that LULCC that occurred between 1986 and 2015 resulted in increased average sediment yield by 20.9 t ha−1 yr−1. Climate change under RCP2.6, RCP4.5 and RCP8.5 combined with 2015 LULC increased annual average soil losses by 31.3, 50.9 and 83.5 t ha−1 yr−1 compared with the 2015 LULC under historical climate data. It was also found that 13.4%, 47.1% and 87.0% of the total area may experience high soil loss under RCP2.6, RCP4.5 and RCP8.5, respectively. Annual soil losses of five top-priority sub catchments range from 62.8 to 57.7 per hectare. Nash Stuncliffe Simulation efficiency (NSE) and R2 values during model calibration and validation indicated good agreement between observed and simulated values both for flow and sediment yield.


2019 ◽  
Vol 11 (4) ◽  
pp. 1150-1164
Author(s):  
Swapnali Barman ◽  
Rajib Kumar Bhattacharjya

Abstract The River Subansiri, one of the largest tributaries of the Brahmaputra, makes a significant contribution towards the discharge at its confluence with the Brahmaputra. This study aims to investigate an appropriate model to predict the future flow scenario of the river Subansiri. Two models have been developed. The first model is an artificial neural network (ANN)-based rainfall-runoff model where rainfall has been considered as the input. The future rainfall of the basin is calculated using a multiple non-linear regression-based statistical downscaling technique. The proposed second model is a hybrid model developed using ANN and the Soil Conservation Service (SCS) curve number (CN) method. In this model, both rainfall and land use/land cover have been incorporated as the inputs. The ANN models were run using time series analysis and the method selected is the non-linear autoregressive model with exogenous inputs. Using Sen's slope values, the future trend of rainfall and runoff over the basin have been analyzed. The results showed that the hybrid model outperformed the simple ANN model. The ANN-SCS-based hybrid model has been run for different land use/land cover scenarios to study the future flow scenario of the River Subansiri.


2019 ◽  
Vol 11 (24) ◽  
pp. 7083 ◽  
Author(s):  
Kristian Näschen ◽  
Bernd Diekkrüger ◽  
Mariele Evers ◽  
Britta Höllermann ◽  
Stefanie Steinbach ◽  
...  

Many parts of sub-Saharan Africa (SSA) are prone to land use and land cover change (LULCC). In many cases, natural systems are converted into agricultural land to feed the growing population. However, despite climate change being a major focus nowadays, the impacts of these conversions on water resources, which are essential for agricultural production, is still often neglected, jeopardizing the sustainability of the socio-ecological system. This study investigates historic land use/land cover (LULC) patterns as well as potential future LULCC and its effect on water quantities in a complex tropical catchment in Tanzania. It then compares the results using two climate change scenarios. The Land Change Modeler (LCM) is used to analyze and to project LULC patterns until 2030 and the Soil and Water Assessment Tool (SWAT) is utilized to simulate the water balance under various LULC conditions. Results show decreasing low flows by 6–8% for the LULC scenarios, whereas high flows increase by up to 84% for the combined LULC and climate change scenarios. The effect of climate change is stronger compared to the effect of LULCC, but also contains higher uncertainties. The effects of LULCC are more distinct, although crop specific effects show diverging effects on water balance components. This study develops a methodology for quantifying the impact of land use and climate change and therefore contributes to the sustainable management of the investigated catchment, as it shows the impact of environmental change on hydrological extremes (low flow and floods) and determines hot spots, which are critical for environmental development.


Sign in / Sign up

Export Citation Format

Share Document