scholarly journals Linear and Nonlinear Analysis of the Carotid Sinus Baroreflex Dynamic Characteristics

2019 ◽  
Vol 8 (0) ◽  
pp. 110-123
Author(s):  
Toru Kawada ◽  
Ramakrishna Mukkamala ◽  
Masaru Sugimachi
2018 ◽  
Vol 315 (3) ◽  
pp. R553-R567 ◽  
Author(s):  
Toru Kawada ◽  
Shuji Shimizu ◽  
Yohsuke Hayama ◽  
Hiromi Yamamoto ◽  
Keita Saku ◽  
...  

Although diabetes mellitus (DM) is a major risk factor for cardiovascular diseases, changes in open-loop static and dynamic characteristics of the arterial baroreflex in the early phase of DM remain to be clarified. We performed an open-loop systems analysis of the carotid sinus baroreflex in type 1 DM rats 4 to 5 wk after intraperitoneal streptozotocin injection ( n = 9) and we compared the results with control rats ( n = 9). The operating-point baroreflex gain was maintained in the DM rats compared with the control rats (2.07 ± 0.67 vs. 2.66 ± 0.22 mmHg/mmHg, P = 0.666). However, the range of arterial pressure (AP) control was narrower in the DM than in the control group (48.0 ± 5.0 vs. 77.1 ± 4.5 mmHg, P = 0.001), suggesting that the reserve for AP buffering is lost in DM. Although baroreflex dynamic characteristics were relatively preserved, coherences were lower in the DM than in the control group. The decreased coherence in the neural arc may be related to the narrowed quasi-linear range in the static relationship between carotid sinus pressure and sympathetic nerve activity in the DM group. Although the reason for the decreased coherences in the peripheral arc and the total reflex arc was inconclusive, the finding may indicate a loss of integrity of the baroreflex-mediated sympathetic AP control in the DM group. The derangement of the baroreflex dynamic characteristics is progressing occultly in this early stage of type 1 DM in a manner where dynamic gains are relatively preserved around the normal operating point.


2011 ◽  
Vol 300 (1) ◽  
pp. R155-R165 ◽  
Author(s):  
Toru Kawada ◽  
Shuji Shimizu ◽  
Atsunori Kamiya ◽  
Yusuke Sata ◽  
Kazunori Uemura ◽  
...  

Although baroreceptors are known to reset to operate in a higher pressure range in spontaneously hypertensive rats (SHR), the total profile of dynamic arterial pressure (AP) regulation remains to be clarified. We estimated open-loop transfer functions of the carotid sinus baroreflex in SHR and Wistar Kyoto (WKY) rats. Mean input pressures were set at 120 (WKY120 and SHR120) and 160 mmHg (SHR160). The neural arc transfer function from carotid sinus pressure to efferent splanchnic sympathetic nerve activity (SNA) revealed derivative characteristics in both WKY and SHR. The slope of dynamic gain (in decibels per decade) between 0.1 and 1 Hz was not different between WKY120 (10.1 ± 1.0) and SHR120 (10.4 ± 1.1) but was significantly greater in SHR160 (13.2 ± 0.8, P < 0.05 with Bonferroni correction) than in SHR120. The peripheral arc transfer function from SNA to AP showed low-pass characteristics. The slope of dynamic gain (in decibels per decade) did not differ between WKY120 (−34.0 ± 1.2) and SHR120 (−31.4 ± 1.0) or between SHR120 and SHR160 (−32.8 ± 1.3). The total baroreflex showed low-pass characteristics and the dynamic gain at 0.01 Hz did not differ between WKY120 (0.91 ± 0.08) and SHR120 (0.84 ± 0.13) or between SHR120 and SHR160 (0.83 ± 0.11). In both WKY and SHR, the declining slope of dynamic gain was significantly gentler for the total baroreflex than for the peripheral arc, suggesting improved dynamic AP response in the total baroreflex. In conclusion, the dynamic characteristics of AP regulation by the carotid sinus baroreflex were well preserved in SHR despite significantly higher mean AP.


2017 ◽  
Vol 312 (5) ◽  
pp. R787-R796 ◽  
Author(s):  
Toru Kawada ◽  
Michael J. Turner ◽  
Shuji Shimizu ◽  
Masafumi Fukumitsu ◽  
Atsunori Kamiya ◽  
...  

Recent clinical trials in patients with drug-resistant hypertension indicate that electrical activation of the carotid sinus baroreflex can reduce arterial pressure (AP) for more than a year. To examine whether the electrical stimulation from one baroreflex system impedes normal short-term AP regulation via another unstimulated baroreflex system, we electrically stimulated the left aortic depressor nerve (ADN) while estimating the dynamic characteristics of the carotid sinus baroreflex in anesthetized normotensive Wistar-Kyoto (WKY; n = 8) rats and spontaneously hypertensive rats (SHR; n = 7). Isolated carotid sinus regions were perturbed for 20 min using a Gaussian white noise signal with a mean of 120 mmHg for WKY and 160 mmHg for SHR. Tonic ADN stimulation (2 Hz, 10 V, and 0.1-ms pulse width) decreased mean sympathetic nerve activity (73.4 ± 14.0 vs. 51.6 ± 11.3 arbitrary units in WKY, P = 0.012; and 248.7 ± 33.9 vs. 181.1 ± 16.6 arbitrary units in SHR, P = 0.018) and mean AP (90.8 ± 6.6 vs. 81.2 ± 5.4 mmHg in WKY, P = 0.004; and 128.6 ± 9.8 vs. 114.7 ± 10.3 mmHg in SHR, P = 0.009). The slope of dynamic gain in the neural arc transfer function from carotid sinus pressure to sympathetic nerve activity was not different between trials with and without the ADN stimulation (12.55 ± 0.93 vs. 13.03 ± 1.28 dB/decade in WKY, P = 0.542; and 17.37 ± 1.01 vs. 17.47 ± 1.64 dB/decade in SHR, P = 0.946). These results indicate that the tonic ADN stimulation does not significantly modify the dynamic characteristics of the carotid sinus baroreflex.


2021 ◽  
Vol 11 (8) ◽  
pp. 3425
Author(s):  
Marco Zucca ◽  
Nicola Longarini ◽  
Marco Simoncelli ◽  
Aly Mousaad Aly

The paper presents a proposed framework to optimize the tuned mass damper (TMD) design, useful for seismic improvement of slender masonry structures. A historical masonry chimney located in northern Italy was considered to illustrate the proposed TMD design procedure and to evaluate the seismic performance of the system. The optimization process was subdivided into two fundamental phases. In the first phase, the main TMD parameters were defined starting from the dynamic behavior of the chimney by finite element modeling (FEM). A series of linear time-history analyses were carried out to point out the structural improvements in terms of top displacement, base shear, and bending moment. In the second phase, masonry's nonlinear behavior was considered, and a fiber model of the chimney was implemented. Pushover analyses were performed to obtain the capacity curve of the structure and to evaluate the performance of the TMD. The results of the linear and nonlinear analysis reveal the effectiveness of the proposed TMD design procedure for slender masonry structures.


2006 ◽  
Vol 17 (01) ◽  
pp. 65-73 ◽  
Author(s):  
SHIRO SAWADA

The optimal velocity model which depends not only on the headway but also on the relative velocity is analyzed in detail. We investigate the effect of considering the relative velocity based on the linear and nonlinear analysis of the model. The linear stability analysis shows that the improvement in the stability of the traffic flow is obtained by taking into account the relative velocity. From the nonlinear analysis, the relative velocity dependence of the propagating kink solution for traffic jam is obtained. The relation between the headway and the velocity and the fundamental diagram are examined by numerical simulation. We find that the results by the linear and nonlinear analysis of the model are in good agreement with the numerical results.


2021 ◽  
Author(s):  
SeHyuk Park ◽  
Hamad Alnuaimi ◽  
Anna Hayes ◽  
Madison Sitkiewicz ◽  
Umar Amjad ◽  
...  

Abstract Guided acoustic wave based techniques have been found to be very effective for damage detection, and both quantitative and qualitative characterization of materials. In this research, guided acoustic wave techniques are used for porosity evaluation of additively manufactured materials. A metal 3D printer, Concept Laser Mlab 200 R Cusing™, is used to manufacture 316L additively manufactured (AM) stainless steel specimens. Two levels of porosity are investigated in this study, which was controlled by a suitable combination of scan speed and laser power. The sample with lower level of porosity is obtained with a low scanning speed. Lead Zirconate Titanate (PZT) transducers are used to generate guided acoustic waves. The signal is excited and propagated through the specimens in a single sided transmission mode setup. Signal processing of the recorded signals for damage analysis involves both linear and nonlinear analyses. Linear ultrasonic parameters such as the time-of-flight and magnitude of the propagating waves are recorded. The nonlinear ultrasonic parameter, the Sideband Peak Count Index (SPC-I) is obtained by a newly developed nonlinear analysis technique. Results obtained for both specimens are analyzed and compared using both linear and nonlinear ultrasonic techniques. Finally, the effectiveness of SPC-I technique in monitoring porosity levels in AM specimens is discussed.


1986 ◽  
Vol 250 (1) ◽  
pp. H96-H107 ◽  
Author(s):  
A. S. Greene ◽  
M. J. Brunner ◽  
A. A. Shoukas

Carotid sinus reflex interactions were studied in 10 dogs anesthetized with pentobarbital sodium. The right and left carotid sinus regions were isolated and perfused at controlled pressures. Pressure in the right and left carotid sinuses were independently varied, and the resulting steady-state reflex changes in arterial pressure, heart rate, respiratory frequency, tidal volume, and total ventilation were measured. Reflex changes when carotid sinus pressure was changed on one side were strongly influenced by pressure in the contralateral carotid sinus (P less than 0.05). Right carotid sinus gain was found to be 0.628 +/- 0.058 at a left carotid sinus pressure of 50 mmHg and 0.148 +/- 0.027 when left carotid sinus pressure was 200 mmHg. Similar results were found for left carotid sinus gain. Suppression was also found for heart rate, respiratory rate, tidal volume, and total ventilation. The hypothesis that rapid resetting of one carotid sinus baroreflex might influence responses from the other side was also tested. Although ipsilateral resetting was consistently observed, no contralateral component of the resetting was detected. An additional inhibitory summation between the right and left carotid sinuses was found such that simultaneous excitation of both receptors resulted in a smaller reflex response than did the sum of individual responses. Sympathetic denervation of the carotid sinus region had no effect.


Sign in / Sign up

Export Citation Format

Share Document