scholarly journals Follicular dynamic and repeatability of follicular wave development in Peranakan Ongole (PO) cattle

2016 ◽  
Vol 21 (1) ◽  
pp. 26 ◽  
Author(s):  
Muhammad Imron ◽  
Iman Supriatna ◽  
. Amrozi ◽  
Mohamad Agus Setiadi

<p class="abstrak2">Superovulation treatment on PO cattle (Bos indicus) was less responsive compared to Bos taurus breed. It might due to the difference of their follicular dynamic. This study was conducted to investigate the follicular dynamics and its repeatability in PO cattle. Follicular dynamics observations conducted on 9 cows trough ultrasound scanning every day. Observations of wave patterns repeatability were performed in 6 cows which its wave pattern already known on the next consecutive IOI.  Research result indicated that PO cattle had 3 (66%) and 4-waves (34%) pattern. The first wave of 3 and 4-waves pattern emerged on day -0.4+0.9 and 1.4+1.1 respectively.  The second wave of 3 and 4-wave pattern emerged on day 9.8+1.5 and 7.4+1.9 respectively.  The pattern of 3 waves has a longer follicle dominant duration (11.6+1.5 day) in the first wave of estrous cycle, compared with 4 waves pattern (10+2.92 and 7+1.00 day respectively). The growth rate of dominant follicle was not different significantly between the 3 and 4-waves pattern (0.87+0.23 and 0.94+0.25 mm/day respectively). Similarly, ovulatory follicle diameter between 3 and 4-waves pattern was also not different significantly (12.24+12.34 and 12.30+12.23 mm respectively). Observation of wave patterns repeatability in 6 PO cows indicated that PO cattle had high repeatability in follicular wave pattern (0.88) and the number of growing follicle was 0.91.  This study resulted data for dynamic of follicular development, wave pattern, its repeatability which be expected to design the protocol of superovulation treatment or other reproduction technologies based on follicular dynamic to improve its result in PO cattle.</p><p> </p>

2010 ◽  
Vol 22 (1) ◽  
pp. 293 ◽  
Author(s):  
L. U. Gimenes ◽  
M. L. Ferraz ◽  
A. Araujo ◽  
P. Fantinato Neto ◽  
M. R. Chiarati ◽  
...  

One important factor in the success of ovum pickup (OPU)/IVP in Bos taurus is the follicular status at OPU concerning the dominance period (Hendriksen et al. 2000 Theriogenology 53, 11-20). The hypothesis of the present study is that OPU performed after follicle deviation, when follicles show a mild level of atresia, improves competence for IVP in Nelore (NE), Holstein (HO), and buffaloes (BU). Objectives were to determine effects of OPU done at different times of synchronized follicular wave (1, 3, or 5 d after expected emergence) and of genetic group (NE, HO, and BU) on IVP. A total of 27 heifers (9 of each genetic group) were maintained in contemporary nutritional and environmental conditions during experiment, in a cross-over design, performed in 6 replicates. Recovered oocytes with at least one cumulus cell layer were matured in TCM-199 supplemented with 10% of FCS plus 50 μM of cysteamin and 0.3 mM of cystine, at 38.5°C with 5% CO2 in air for 24 h. IVF was done with 2 × 106 spermatozoa per mL of NE (for bovine oocytes) or BU semen (for BU oocytes), for 20 h at the same incubator conditions of IVM. After IVF, presumptive zygotes were denuded and cultured in SOF under the same previous atmosphere conditions. Medium was changed 3 d after IVF when cleavage rate (CR) was assessed. Blastocyst (BR) and hatching rates (HR) were evaluated 7 and 9 days after IVF, respectively. About 50% of hatched blastocysts were fixed until nuclei counting. Data were analyzed by ANOVA using the Proc Mixed model. No effects of interaction or time of synchronization were observed in any of the variables. Concerning genetic group, NE had better results than HO and BU (mean ± SEM / heifer / replicate), respectively, for visualized follicles (41.0a ± 2.1, 22.1b ± 1.3, 18.8b ± 0.9), total oocytes (37.1a ± 2.5, 15.4b ± 1.2, 14.8b ± 1.0), oocytes at IVM (30.8a ± 2.4, 10.7b ± 1.0, 7.9b ± 0.7), oocytes at IVC (18.7a ± 0.8, 8.0b ± 0.5, 7.5b ± 0.4), cleaved embryos (15.4a ± 0.7, 4.6b ± 0.4, 4.4b ± 0.3),CR(81.8a, 59.1b, 62.3b), blastocysts on Day 7 (5.1a ± 0.6, 1.0b ± 0.2, 0.6b ± 0.1), BR (25.8a, 13.6b, 9.1b), and hatched blastocysts on Day 9 (2.6a ± 0.4, 0.3b ± 0.1, 0.3b ± 0.1). Recovery rate and HR were greater for NE (89.4 and 50.6%, respectively) than for HO (73.3 and 23.2%), but neither differed from BU (82.8 and 31.9%). Also, the percentage of viable was greater for NE (83.0) than for HO (66.9) and BU (53.1). No effects were observed for nuclei counting (NE = 176.6 ± 5.3, HO = 168.9 ± 13.7 and BU = 206.1 ± 23.1). Results demonstrate that Nelore had a better efficiency for IVP than Holstein and buffaloes. OPU performed at different times of synchronized follicular wave did not influence IVP, conversely to the initial hypothesis of this study. FAPESP (06/59550-6, 07/04782-2), Tortuga Cia Zootecnica®, Santa Adele and São Caetano Farms, LMMD, PCAPS, HOVET (Dr. Ubiraem Schalch), VRA, VNP (Prof. Dr. Francisco de Palma Rennó).


2007 ◽  
Vol 19 (1) ◽  
pp. 242 ◽  
Author(s):  
L. U. Gimenes ◽  
N. A. T. Carvalho ◽  
M. F. Sá Filho ◽  
H. Ayres ◽  
J. R. S. Torres-Júnior ◽  
...  

In Holstein cows, the diameter of the dominant follicle (DF) at the time of follicle deviation is 8.5 mm and the subordinate follicle (SF) is 7.2 mm (Ginther et al. 1996 Biol. Reprod. 55, 1187–1194). However, follicular responsiveness to an ovulatory treatment occurs only with 10.0-mm-diameter follicles (Sartori et al. 2001 Biol. Reprod. 65, 1403–1409). The current study tested the hypothesis that, in Bos indicus (Nelore and crossbred Nelore � Gir) females, the follicular diameters at the time of deviation and ovulation responsiveness are smaller than those in Holstein cows. The experiment was performed in two phases. In the first phase, 12 Nelore heifers were previously synchronized with a protocol using progestagen and estradiol benzoate. After implant removal, all heifers were evaluated by transrectal ultrasonography (Aloka SSD-500, Tokyo, Japan) every 12 h until Day 5 of the estrous cycle (Day 0 = Day of the ovulation) to assess the time of ovulation, the time of follicle deviation, and the follicular diameter at the deviation. In the second phase, 29 Bos indicus heifers (Nelore and crossbred Nelore � Gir) were previously synchronized with the same protocol as cited above. After the ovulations (Day 0), the follicles were evaluated by transrectal ultrasonography every 24 h, until they reached the diameter of 7.0–8.4 mm (n = 9); 8.5–10.0 mm (n = 10); and &gt;10.0 mm (n = 10). In order to assess the ovulatory capacity, all animals were treated with 25 mg of LH (Lutropin-V�; Bioniche Animal Health, Inc., Belleville, Ontario, Canada) at these follicle diameter ranges. After the LH treatment, all animals were monitored by ultrasonography every 12 h for 48 h. ANOVA, Bartlett, and chi-square tests were used in the statistical analyses. In the first phase, the diameters of the DF and SF at the time of follicular deviation (61.9 � 4.9 h after ovulation) were 6.2 � 0.2 and 5.8 � 0.2 mm, respectively. In the second phase, the the average follicular diameters at the time of LH administration in the groups 7.0–8.4 mm, 8.5–10.0 mm, and &gt;10.0 mm were 7.6a � 0.1 mm, 9.6b � 0.1 mm, and 10.9c � 0.2 mm; and their ovulation rates were 33.3%a (3/9), 80.0%b (8/10), and 90.0%b (9/10), respectively (P &lt; 0.05). The interval from LH treatment to ovulation was 38.0 � 4.0 h, 31.5 � 2.7 h, and 30.0 � 2.0 h, respectively (P &gt; 0.05). In conclusion, in Bos indicus heifers, follicle deviation occurred with smaller diameters than previously reported in Bos taurus breeds. In addition, Bos indicus heifers are able to ovulate in response to 25 mg of LH with smaller diameters compared to those of Bos taurus breeds. Moreover, in Bos indicus heifers, ovulatory capacity is acquired by follicles as small as 7.0–8.4 mm, but this responsiveness significantly increases after follicles reach 8.5–10.0 mm. This work was supported by FAPESP (Proc:03/10203-4); Bioniche Animal Health, Inc., Belleville, Ontario, Canada; and Tecnopec, S�o Paulo, Brazil.


2007 ◽  
Vol 19 (1) ◽  
pp. 242
Author(s):  
C. Kawashima ◽  
N. Sudo ◽  
C. Amaya Montoya ◽  
E. Kaneko ◽  
M. Matsui ◽  
...  

Recent studies have shown that IGF-1 is a crucial factor for ovarian follicular development in mammals. In postpartum (pp) dairy cows, plasma IGF-1 and estradiol (E2) levels in ovulatory cows at the first follicular wave pp are higher than in anovulatory cows. However, the plasma IGF-1 profile in an ovulatory or anovulatory dominant follicle (DF), which have different E2 production, at the first follicular wave pp have not yet been elucidated. Thus, we investigated the changing profile of plasma IGF-1 levels during first follicular wave pp. In 22 multiparous Holstein cows, blood samples were obtained 2 times/week from 4 weeks prepartum to 3 weeks pp, and the first follicular wave was monitored by ultrasound 2 times/week from 7 days pp to ovulatory phase. Detailed IGF-1 profiles in blood were determined during DF growth and maturation 4 times/day from 10 days pp to 7 days after the first ovulation in 5 ovulatory cows and to 20 days pp in 4 anovulatory cows; the data were analyzed by repeated measures ANOVA, and Student&apos;s t-test. There was no interaction between groups and time within the prepartum or the pp period. The ovulatory cows (n = 13/22) with an estrogen-active dominant (EAD: high plasma E2 level with peak) follicle showed higher IGF-1 levels than anovulatory cows (n = 9/22) with an estrogen-inactive dominant (EID: low plasma E2 level without peak) follicle during the prepartum (117 � 8 vs. 91 � 5 ng mL-1; P &lt; 0.05) and the pp (91 � 4 vs. 64 � 4 ng mL-1; P &lt; 0.001) period. Especially noteworthy, during the first follicular wave pp in ovulatory cows, the plasma IGF-1 levels were maintained at a high level until E2 levels increased, followed by an LH surge. We observed that the EAD follicle in ovulatory cows ovulated. To further examine the IGF-1 system in the intra-follicular environment, we used the EAD and EID follicles from ovaries of dairy cows obtained at a slaughterhouse. The EAD and EID follicles were classified on the basis of follicle diameter and E2 concentrations in follicular fluid (FF). The significant differences of factors between EAD and EID were analyzed by Student&apos;s t-test. The expression of IGF-1 mRNA was not detected in follicular cells in either EAD and EID, suggesting that IGF-1 in FF is mainly derived from liver. The free IGF-1 levels in FF in EAD (4.8 � 0.5 ng mL-1) were higher than those in EID (2.7 � 0.1 ng mL-1; P &lt; 0.05). In addition, the expression of type 1 IGF receptor (IGFR-1) mRNA in EAD was higher than hat in EID (P &lt; 0.0001). From the results of the present study, it is apparent that the EAD follicle during the first follicular wave pp in ovulatory cows sufficiently expressed IGFR-1, and a liver-derived IGF-1 stimulates E2 production in the follicle to ovulate. In conclusion, our data suggest that a high concentration of IGF-1, secreted from the liver, during the peripartum period may be one of important factors for the appearance of an ovulatory follicle during the first follicular wave pp cows.


2020 ◽  
Vol 32 (2) ◽  
pp. 189
Author(s):  
M. Younis ◽  
M. Irfan-ur-Rehman Khan ◽  
A. Murtaza ◽  
M. Abbas ◽  
M. Z. Tahir ◽  
...  

Pakistan has 30.9 million heads of sheep; however, little information is available on their reproductive aspects. The objective of this study was to document ovarian physiology and endocrinology of Lohi ewes during the oestrous cycle. Nine Lohi ewes, synchronized by administering single prostaglandin F2α (PGF2a; Cyclomate, Star Laboratories), were monitored for ovarian follicular dynamics using transrectal ultrasonography (7.5MHz, HS-1500, Honda) for two consecutive oestrous cycles during the breeding season (September to November 2018). Changes in plasma progesterone and oestradiol-17β concentrations of ewes (n=9) were also determined during the oestrous cycle using radioimmunoassay. The interovulatory interval of Lohi ewes averaged 17.0±0.1 days, and the duration of follicular and luteal phases was 4.6±0.2 and 11.3±0.2 days, respectively. Follicles emerged in either 3- or 4-wave patterns, but the frequency of the 3-wave pattern was higher than that of the 4-wave (87 vs. 13%, respectively; P=0.05). Following ovulation (Day 0), follicles (=3mm) in 3-wave cycles (n=14) emerged on Days 0.7, 5.2, and 10.5, whereas in 4-wave cycles (n=2) follicles emerged on Days 0.1, 4, 8.5, and 11.5. The maximum diameter of preovulatory follicles and corpora lutea (CL) were 5.4±0.3 and 10.4±0.3mm, respectively. Regardless of the wave pattern, single ovulation occurred in each cycle. The CL was first detectable on Day 4±0.1, it reached maximum diameter on Day 9±0.1, and luteolysis began on Day 12.2±0.2 of the cycle. The peak plasma oestradiol-17β concentration (42.5±2.6 pgmL−1) was observed 48h before ovulation and correlated with the diameter of the preovulatory follicle during the follicular phase (r=0.84; P&lt;0.05). The peak plasma progesterone concentration (11.8±1.7ngmL−1) was observed on Day 9±0.1 and coincided with the diameter of CL throughout the oestrous cycle (r=0.93; P&lt;0.05). In conclusion, the majority of oestrous cycles in Lohi ewes had a 3-wave pattern and were mono-ovulatory in nature.


2018 ◽  
Vol 30 (1) ◽  
pp. 198
Author(s):  
G. Santos ◽  
M. P. Bottino ◽  
M. B. D. Ferreira ◽  
J. C. Silveira ◽  
A. C. F. C. M. Avila ◽  
...  

The aim was to evaluate the effect of subclinical mastitis by somatic cell count (SCC) on follicular dynamics, ovulation, oocyte and cumulus cell quality, exosome size and concentration in milk-producing cows. Crossbred cows (Bos taurus × Bos indicus; that is, Holstein × Gyr) were randomly allocated to control (SCC <200,000 cells mL−1] and mastitis (SCC >400,000 cells mL−1) groups. In experiment 1 (follicular dynamics), cows (n = 57) were submitted to ultrasonographic evaluations every 24 h, after removal of an intravaginal progesterone device (Day 8) up to Day 10. From Day 10, ultrasound evaluations were performed every 12 h, until ovulation or until 96 h after progesterone device withdrawal, in order to follow final dominant follicle growth and ovulation. In experiment 2 (oocyte, cumulus cells, and follicular fluid evaluation), cows (n = 23) were submitted to follicular aspirations, preceded by synchronization of the emergence of the follicular wave. The levels of target genes in cumulus cells (BCL2, BAX, PI3K, PTEN, FOXO3) were evaluated by RT-qPCR. In the follicular fluid, the exosomes were isolated for evaluation of particle size. Data were analysed by the Glimmix procedure of SAS (SAS Institute Inc., Cary, NC, USA). Ovulation rate (P = 0.09) was higher in control cows [control 77.42% (24/31) and mastitis 57.69% (15/26)]. Viable oocyte rate (P = 0.01) was also higher in control cows [control 59.1% (130/220) and mastitis 41.9% (125/298)]. The dynamics of follicular growth did not differ between groups. The number of degenerate oocytes (P = 0.001) was higher in cows of the mastitis group. In the evaluation of cumulus cell gene expression, there was a higher abundance of BAX transcripts (P = 0.003) in cells of mastitis cows. Additionally, the mean and mode of exosome diameter in mastitis cows were smaller (P = 0.03 and P = 0.02, respectively). In conclusion, ovulation rate, oocyte quality, and follicular fluid exosome diameter were lower in cows with subclinical mastitis, demonstrating a link between mammary gland sanitary status and reproduction.


2002 ◽  
Vol 74 (3) ◽  
pp. 539-545 ◽  
Author(s):  
C. Viñoles ◽  
L. J. Harris ◽  
M. Forsberg ◽  
G. Banchero ◽  
E. Rubianes

AbstractIn this investigation we tested the hypothesis that static body condition (BC) of the ewe affects oestradiol and FSH with implications for subsequent follicular growth and turn-over. Sixteen Polwarth ewes were selected from a flock according to their BC score (scale: 1 emaciated; 5 obese). High BC (HBC) ewes (no. = 8) had a BC score of 4·1 (s.e. 0·1) and low BC (LBC) ewes (no. = 8) had a BC score of 1·9 (s.e. 0·1). Daily ultrasound examinations were performed and blood samples for progesterone, oestradiol and follicle-stimulating hormone (FSH) determination were collected. All HBC ewes (8/8) exhibited three waves of follicular development, while four LBC ewes (4/8) had two waves and the other four (4/8) had three waves of follicular development (P ≤ 0·05) during the interovulatory period. Overall, the emergences of 33 out of 44 follicular waves were preceded by significant increases in FSH concentrations. Maximum FSH concentrations were detected 0·9 ± 0·2 days before wave emergence. Oestradiol concentrations increased significantly during the growing phase in 38 out of 44 large follicles. A negative correlation between oestradiol and FSH was observed in HBC ewes. A similar inhibitory effect of oestradiol on FSH was observed in LBC ewes, irrespective of whether they developed two or three follicular waves. However, a longer period with high FSH was needed to promote the emergence of the second follicular wave in two-wave LBC ewes. Four HBC ewes had twin ovulations but no LBC ewes did (P ≤ 0·05). In HBC ewes, the follicular phase was characterized by lower oestradiol (6·5 (s.e. 1·0) pmol/l) but higher mean FSH concentrations (2·4 (s.e.0·4) μg/l) than in LBC ewes (8·9 (s.e. 1·2) pmol/l and 2·0 (s.e. 0·3) μg/l, respectively; P ≤ 0·05). The present results suggest that BC influences the pattern of follicular dynamics through changes in the endocrine milieu. Higher FSH concentrations during the follicular phase in HBC ewes, which allowed an extended period of follicular recruitment from a significantly larger pool of small antral follicles could explain the higher ovulation rate observed in this group.


2010 ◽  
Vol 22 (1) ◽  
pp. 176
Author(s):  
L. Proctor ◽  
D. Tutt ◽  
D. Olliver ◽  
S. Galloway ◽  
J. L. Juengel ◽  
...  

A study was designed to compare the effect of a prostaglandin-based synchronization protocol on ovarian follicular dynamics in sheep with the FecB (Booroola) mutation. Forty dry Romney sheep (57.6 ± 7.3 kg; 6.1 ± 1.1 years) were randomly selected from both Invermay Booroola (BB; n = 20) and commercial (non-FecB carriers, ++; n = 20) flocks. All ewes had their estrous cycles synchronized with 2 i.m. injections of PGF (150 μg of cloprostenol, Estrumate, Schering-Plough Coopers Animal Health Ltd., New Zealand) administered 7 days apart. Ewes were monitored by transrectal ultrasonography (Aloka 900-SSD and a 7.5-MHz linear-array transducer, Aloka, Tokyo, Japan) daily from Day -2 to the day of ovulation. Data were analyzed by Student’s t-test or Wilcoxon Rank Sum test. Variances were compared with Barlett’s test. Paired t-test compared the number of preovulatory follicles in each genotype after PGF treatments and intervals from PGF to ovulation after PGF. Data are presented as mean (± SEM). The number of corpora lutea (CL) and total CL area at the time of the first and second PGF treatment were 4.4 ± 0.6; 5.7 ± 1.4 and 672.1 ± 133.5 mm2; 999.0 ± 145.9 mm2 in the BB and 2.1 ± 0.2; 2.1 ± 0.5 and 342.3 ± 60.7 mm2; 401.3 ± 68.6 mm2 in ++ ewes, respectively. These 2 variables were higher (P < 0.01) at both PGF injections in the BB than in the ++ ewes, except the CL area at the time of first PGF treatment (P = 0.15). The largest follicle diameter at the time of the first and second PGF treatments was smaller (P < 0.003) in BB (4.1 ± 0.3 mm; 3.5 ± 0.2 mm) than in ++ (5.3 ± 0.3 mm; 5.8 ± 0.1 mm) ewes. The median and mean number of follicles that ovulated after the first and second PGF treatment were higher (P < 0.0001) in BB (6 & 7; 5.7 ± 0.3; 6.9 ± 0.3; difference = 1.2 ± 0.4; P < 0.003) than in the ++ (2 & 2; 2.1 ± 0.1; 2.1 ± 0.1) sheep. The luteal area at the time of first and second PGF in both BB and ++ did not differ (P = 0.3). The intervals from the first and second PGF to the respective ovulations did not differ (P > 0.61) between BB (3.4 ± 0.2; 3.0 ± 0.3d) and ++ (3.5 ± 0.2d; 3.0 ± 0.1d) ewes. However, interval from the second PGF to ovulation was more variable (P = 0.002) in the BB than in the ++ ewes. Data of both groups were combined and a mean significant difference of 0.6 ± 0.2d (P < 0.003) was found between the first and second PGF-to-ovulation intervals. The interval from the first PGF to emergence of the next follicular wave was shorter (P < 0.02) and more variable (P < 0.03) in the BB (2.7 ± 0.4d) than in the ++ (3.5 ± 0.2 d) group. Preovulatory follicles were smaller in Booroola, but higher in number, than in ++ ewes, whereas the luteal area was similar. Within the BB ewes, the higher number of follicles that ovulated after the second PGF than after the first injection may be due to a higher follicular response to an elevated rebound in circulating FSH after the first PGF. A high number of growing follicles of the first follicular wave may also have contributed to this event. These findings warrant further research aimed at the study of the interaction between FSH and follicle dynamics in estrus synchronized sheep carrying the FecB mutation.


2004 ◽  
Vol 16 (2) ◽  
pp. 130 ◽  
Author(s):  
R.J. Mapletoft ◽  
M.G. Colazo ◽  
J.A. Small ◽  
D.R. Ward ◽  
J.P. Kastelic

The objective was to investigate the effect of dose of estradiol valerate (EV) on ovarian follicular growth profiles, intervals to follicular wave emergence and, following CIDR removal, estrus and ovulation in beef cows. On Day 0, 43 non-lactating, crossbred beef cows, 3 to 9 yr of age and at random stages of the estrous cycle, received a CIDR (Bioniche Animal Health; Belleville, Ontario, Canada) and were randomly allocated to one of four groups to receive no further treatment (Control; n=10), or an injection of 1mg (n=11), 2mg (n=10), or 5mg (n=12) i.m. of EV (Sigma Chemical Co, St. Louis, MO, USA) in 2mL canola oil. On Day 7, CIDR were removed and cows received 500μg i.m. of cloprostenol (Estrumate, Schering Plough Animal Health, Pointe-Claire, Quebec, Canada). Ovaries were examined by transrectal ultrasonography once daily until 48h after CIDR removal to detect ovarian follicle growth profiles, and twice daily thereafter to detect ovulation. Data were analyzed by ANOVA (LSD and Bartlett’s tests) and chi-square procedures. One cow (5mg EV group) lost the CIDR and was removed from all analyses. There was an effect of day (P&lt;0.0001) on CL diameter, but the effects of treatment (P=0.3), and the treatment-by-day interaction (P=0.1), were not significant. Follicular wave emergence occurred within 7d in 7/10 (70%) Control cows and 31/32 (97%; P&lt;0.04) EV-treated cows (one cow in late diestrus at the time of treatment did not respond to 1mg EV). Mean (±SD) interval from treatment to wave emergence was longer (P&lt;0.03) in cows treated with 5mg EV (4.8±1.2d) than in those treated with 1mg (3.2±0.9 days) or 2mg EV (3.4±0.8 days), while Control cows were intermediate (3.8±2.0 days). Although follicular wave emergence tended (P&lt;0.09) to be more synchronous in cows receiving EV, intervals from CIDR removal to estrus (P=0.7) and ovulation (P=0.8) did not differ among groups. Diameter of the dominant follicle was smaller (P&lt;0.04) at CIDR removal and tended to be smaller (P&lt;0.08) just prior to ovulation in the 5mg EV group (8.5±2.2 and 13.2±0.6mm, respectively) than in the Control (11.8±4.6 and 15.5±2.9mm, respectively) or 1mg EV (11.7±2.5 and 15.1±2.2mm, respectively) groups, with the 2mg EV group (10.7±1.5 and 14.3±1.7mm, respectively) intermediate. Diameter of the dominant follicle at CIDR removal was less variable (P&lt;0.01) in the 2 and 5mg EV groups than in the Control group and intermediate in the 1mg EV group. In summary, dose of EV affected follicular dynamics, interval to and synchrony of follicular wave emergence, and dominant follicle diameter at CIDR removal and just prior to ovulation in CIDR-treated cows. However, interval from CIDR removal to estrus and ovulation was not affected by treatment. Results suggest that a dose of 2mg EV may be most efficacious in synchronizing follicular wave emergence in CIDR-treated cows.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Marina Amaro de Lima ◽  
Fábio Morotti ◽  
Bernardo Marcozzi Bayeux ◽  
Rômulo Germano de Rezende ◽  
Ramon Cesar Botigelli ◽  
...  

Abstract We evaluated the effect of the antral follicle count (AFC) on ovarian follicular dynamics, pregnancy rates, progesterone concentrations, and transcriptional patterns of genes in Nelore cattle (Bos taurus indicus) after a timed artificial insemination (TAI) programme. Cows were separated based on the AFC, and those with a high AFC showed a larger (P < 0.0001) ovarian diameter and area than those with a very low AFC. Females with a very low AFC exhibited a larger (P < 0.01) diameter of the dominant follicle at TAI (13.6 ± 0.3 vs. 12.2 ± 0.4 mm) and a tendency (P = 0.06) to have different serum progesterone concentrations (2.9 ± 0.3 vs. 2.1 ± 0.3 ng/mL; on day 18, considering day 0 as the beginning of the synchronization protocol) than those with a high AFC. The pregnancy rate was higher (P ≤ 0.05) in animals with a very low (57.9%) and low (53.1%) AFC than in those with a high AFC (45.2%). The expression of genes related to intercellular communication, meiotic control, epigenetic modulation, cell division, follicular growth, cell maintenance, steroidogenesis and cellular stress response was assessed on day 5. In females with a low AFC, 8 and 21 genes in oocytes and cumulus cells, respectively, were upregulated (P < 0.05), while 3 and 6 genes in oocytes and cumulus cells, respectively, were downregulated. The results described here will help elucidate the differences in ovarian physiology and the reproductive success of Bos indicus females with a low or high AFC.


2004 ◽  
Vol 16 (2) ◽  
pp. 129 ◽  
Author(s):  
J.P. Kastelic ◽  
M.G. Colazo ◽  
J.A. Small ◽  
D.R. Ward ◽  
R.J. Mapletoft

The objective was to characterize ovarian follicular dynamics in beef cows treated with a CIDR (Bioniche Animal Health; Belleville, Ontario, Canada) and an injection of estradiol-17β (E2), with or without progesterone (P4), late in the estrous cycle. Previously synchronized, non-lactating, crossbred beef cows (n=36) received a CIDR (Day 0) 16 to 18 days after ovulation and were randomly allocated to one of three treatment groups: no further treatment (Control, n=12), an injection of 5mg E2 (E2, n=12), or 5mg E2 plus 100mg P4 (E2P4, n=12; both from Sigma Chemical Co., St.Louis, MO, USA) i.m. in 2mL canola oil. On Day 7, CIDR were removed and cows received 500μg i.m. of cloprostenol (Estrumate, Schering Plough Animal Health, Pointe-Claire, Quebec, Canada). Ovaries were examined once daily by transrectal ultrasonography to detect ovarian follicle growth profiles, and determine the time of ovulation. Blood samples were taken daily for progesterone determination. Data were analyzed by ANOVA (LSD and Bartlett’s tests), Student’s t-test and chi-square procedures. Diameter of the CL and the dominant follicle, and progesterone concentration on Day 0 did not differ among groups (P=0.6; overall mean (±SD), 16.8±2.7mm, 14.1±2.0mm, and 1.5±1.9ngmL, respectively). Thirteen cows ovulated within 3 days of treatment (50% of E2- and E2P4-treated cows and 8.3% of Control cows; P=0.05); cows that ovulated had smaller CL diameters (15.2±1.7 v. 17.7±2.7mm; P&lt;0.004) and lower progesterone concentrations (0.4±0.2 v.2.1±2.2ngmL; P&lt;0.001) at the time of treatment. Follicular wave emergence occurred within 7 days in 4/12 Control cows, 10/12 E2-treated cows, and 10/12 E2P4-treated cows (P&lt;0.01). Although the interval from treatment to wave emergence did not differ among treatments (P=0.8; overall, 3.4±1.5 days), follicular wave emergence was more synchronous (P&lt;0.004) in the E2 group than in the Control or E2P4 groups. At CIDR removal, dominant follicle diameter was larger (P&lt;0.02) in the Control group (15.9±5.5mm) than in the E2 (11.9±1.8mm) or E2P4 (11.5±3.4mm)groups, but dominant follicle diameter was less variable (P&lt;0.003) in the E2 group than in the other two groups. Three cows did not ovulate after CIDR removal; two in the Control group and one in the E2P4 group. Interval to ovulation was shorter (P&lt;0.05) in the Control group (70.8±10.5h)than in the E2 (87.0±9.0h) or E2P4 (86.2±7.2h) groups, and the intervals to ovulation in cows that ovulated following treatment (91.0±8.0h) was longer (P&lt;0.001) than in those that did not (76.6±9.6h). In summary, treatment of cows with an estradiol-progesterone protocol late in the estrous cycle resulted in ovulation (50.0%), atresia (33.3%) or persistence (16.6%) of the dominant follicle present at that time. As length of follicular dominance and timing of ovulation were affected, fertility may be impaired following AI.


Sign in / Sign up

Export Citation Format

Share Document