scholarly journals Neurological complications of alcoholic disease and ways of their correction

2019 ◽  
Vol 11 (3) ◽  
pp. 124-128 ◽  
Author(s):  
A. Yu. Emelyanova ◽  
O. E. Zinovyeva ◽  
S. R. Fedoseev ◽  
E. V. Misyuryaeva

The problem of alcohol abuse and its social and medical consequences has remained relevant for many years. Damage to the nervous system is one of the most common manifestations of alcoholic disease. The effect of ethanol and its metabolites results in damage to all parts of the nervous system and skeletal muscles. The paper provides a brief overview of Russian and foreign literature on the neurological manifestations of chronic alcohol intoxication. It considers modern ideas about the pathogenesis of alcoholic neuropathy (APN). It also discusses differences in the clinical presentation, course, and developmental mechanisms of the main (chronic toxic and acute/subacute) forms of APN associated with thiamine deficiency. The paper notes difficulties in diagnosing peripheral nerve damage, especially in the early stages of the disease and describes modern methods for objectifying damage to thin nerve fibers in chronic APN. It presents approaches to treating alcohol-induced damage to the peripheral nervous system, by taking into account the leading mechanisms of pathogenesis. Special attention is paid to B-complex vitamins and alpha-lipoic acid preparations frequently used in this disease, to the mechanisms of their therapeutic action, and to the evaluation of their efficacy in APN.

2019 ◽  
Vol 11 (2S) ◽  
pp. 83-88
Author(s):  
O. E. Zinovyeva ◽  
N. V. Vashchenko ◽  
O. E. Mozgovaya ◽  
T. A. Yanakaeva ◽  
A. Yu. Emelyanova

The paper considers various variants of nervous system injury in alcoholic disease. It discusses the epidemiology, pathogenesis, diagnosis, and clinical manifestations of central and peripheral nervous system lesions in the presence of acute and chronic alcohol intoxication. Attention is paid to the issues of etiotropic, pathogenetic, and symptomatic treatment for neurological manifestations of alcoholic disease and to the role of neurotropic B vitamins in the treatment of alcohol-induced deficiency and non-deficiency states.


2021 ◽  
pp. 25-30
Author(s):  
K. A. Makhinov ◽  
P. R. Kamchatnov

Diabetes mellitus (DM) causes damage to various body systems, including the peripheral nervous system. The main variants of peripheral nerve damage in diabetes mellitus are considered. Information on the development of this kind of lesion, in particular, on the formation of neuropathic pain syndrome, is given. The therapeutic possibilities of drugs from various pharmacological groups for the treatment of patients with neurological complications of diabetes are analyzed.


2021 ◽  
Author(s):  
Amra Sakusic ◽  
Alejandro A. Rabinstein

AbstractNeurological complications after heart transplantation are common and include cerebrovascular events (ischemic strokes, hemorrhagic strokes, and transient ischemic attacks), seizures, encephalopathy, central nervous system (CNS) infections, malignancies, and peripheral nervous system complications. Although most neurological complications are transient, strokes and CNS infections can result in high mortality and morbidity. Early recognition and timely management of these serious complications are crucial to improve survival and recovery. Diagnosing CNS infections can be challenging because their clinical presentation can be subtle in the setting of immunosuppression. Immunosuppressive medications themselves can cause a broad spectrum of neurological complications including seizures and posterior reversible encephalopathy syndrome. This article provides a review of the diagnosis and management of neurological complications after cardiac transplantation.


Author(s):  
Z. M. Yaschyshyn ◽  
S. L. Popel

The aim: to study the dynamics of histological and ultrastructural changes in muscle fibers and their neuromuscular endings under conditions of prolonged hypokinesia at different stages of ontogenesis. Methods. Studied skeletal muscles and their peripheral nervous apparatus of laboratory male Wistar rats aged 30 to 270 days. The restriction of motor activity was carried out in special canister cells for 30, 60, 90, and 240 days (5 animals for each term). To determine the type of muscle fiber, the Nahlas histochemical method was used, the Kulchitsky method was used to detect myelinated nerve fibers, the Bilshovsky-Gros method and the electron microscopic method to identify neuromuscular endings. Results. The data of histological and electron microscopic examination of skeletal muscle fibers and their neuromuscular endings under conditions of prolonged hypokinesia indicate their regular restructuring during the development of muscles, the formation of their synapses and structures that are associated with them at different stages of ontogenesis. Conclusion. The study provides an in-depth understanding of the relative frequency and nature of the disturbance of the neuromuscular endings during prolonged hypokinesia and its effect on the dynamics of structural adjustment of individual types of muscle fibers in ontogenesis.


Author(s):  
Z. M. Yaschyshyn ◽  
S. L. Popel

The aim: to study the dynamics of histological and ultrastructural changes in muscle fibers and their neuromuscular endings under conditions of prolonged hypokinesia at different stages of ontogenesis. Methods. Studied skeletal muscles and their peripheral nervous apparatus of laboratory male Wistar rats aged 30 to 270 days. The restriction of motor activity was carried out in special canister cells for 30, 60, 90, and 240 days (5 animals for each term). To determine the type of muscle fiber, the Nahlas histochemical method was used, the Kulchitsky method was used to detect myelinated nerve fibers, the Bilshovsky-Gros method and the electron microscopic method to identify neuromuscular endings. Results. The data of histological and electron microscopic examination of skeletal muscle fibers and their neuromuscular endings under conditions of prolonged hypokinesia indicate their regular restructuring during the development of muscles, the formation of their synapses and structures that are associated with them at different stages of ontogenesis. Conclusion. The study provides an in-depth understanding of the relative frequency and nature of the disturbance of the neuromuscular endings during prolonged hypokinesia and its effect on the dynamics of structural adjustment of individual types of muscle fibers in ontogenesis.


2020 ◽  
Vol 21 (15) ◽  
pp. 5475 ◽  
Author(s):  
Manuela Pennisi ◽  
Giuseppe Lanza ◽  
Luca Falzone ◽  
Francesco Fisicaro ◽  
Raffaele Ferri ◽  
...  

Increasing evidence suggests that Severe Acute Respiratory Syndrome-coronavirus-2 (SARS-CoV-2) can also invade the central nervous system (CNS). However, findings available on its neurological manifestations and their pathogenic mechanisms have not yet been systematically addressed. A literature search on neurological complications reported in patients with COVID-19 until June 2020 produced a total of 23 studies. Overall, these papers report that patients may exhibit a wide range of neurological manifestations, including encephalopathy, encephalitis, seizures, cerebrovascular events, acute polyneuropathy, headache, hypogeusia, and hyposmia, as well as some non-specific symptoms. Whether these features can be an indirect and unspecific consequence of the pulmonary disease or a generalized inflammatory state on the CNS remains to be determined; also, they may rather reflect direct SARS-CoV-2-related neuronal damage. Hematogenous versus transsynaptic propagation, the role of the angiotensin II converting enzyme receptor-2, the spread across the blood-brain barrier, the impact of the hyperimmune response (the so-called “cytokine storm”), and the possibility of virus persistence within some CNS resident cells are still debated. The different levels and severity of neurotropism and neurovirulence in patients with COVID-19 might be explained by a combination of viral and host factors and by their interaction.


2004 ◽  
Vol 100 (6) ◽  
pp. 1519-1525 ◽  
Author(s):  
Jean-Pierre Estebe ◽  
Robert R. Myers

Background Amitriptyline is a tricyclic antidepressant drug used systemically for the management of neuropathic pain. Antidepressants, as a class of drugs with direct neurologic actions, are becoming widely used for the management of chronic pain, although their mechanisms are not entirely understood. Amitriptyline exerts potent effects on reuptake of norepinephrine and serotonin and blocks alpha 2A adrenoreceptors and N-methyl-D-aspartate receptors. Because amitriptyline is also a particularly potent blocker of sodium channels and voltage-gated potassium and calcium channels, it has been recommended as a long-acting local anesthetic agent. Unfortunately, amitriptyline has significant toxic side effects in the central nervous system and cardiovascular system that are dose-related to its systemic administration. Therefore, before amitriptyline can be used clinically as a local anesthetic agent, it should be thoroughly explored with respect to its direct neurotoxic effect in the peripheral nervous system. Methods The left sciatic nerve of Sprague-Dawley rats (12/ group) received a single topical amitriptyline dose of 0.625, 1.25, 2.5, or 5 mg; a saline group (n = 2) was used as control. Neuropathologic evaluations were conducted in separate animals (n = 4) 1, 3, and 7 days later. Results Amitriptyline topically applied in vivo to rat sciatic nerve causes a dose-related neurotoxic effect. Drug doses of 0.625-5 mg all caused Wallerian degeneration of peripheral nerve fibers, with the number of affected fibers and the severity of the injury directly related to the dose. Conclusion Because the effective local anesthetic dose is within this dose range, the authors strongly recommend that amitriptyline not be used as a local anesthetic agent.


CNS Spectrums ◽  
2005 ◽  
Vol 10 (4) ◽  
pp. 298-308 ◽  
Author(s):  
Walter Zieglgänsberger ◽  
Achim Berthele ◽  
Thomas R. Tölle

AbstractNeuropathic pain is defined as a chronic pain condition that occurs or persists after a primary lesion or dysfunction of the peripheral or central nervous system. Traumatic injury of peripheral nerves also increases the excitability of nociceptors in and around nerve trunks and involves components released from nerve terminals (neurogenic inflammation) and immunological and vascular components from cells resident within or recruited into the affected area. Action potentials generated in nociceptors and injured nerve fibers release excitatory neurotransmitters at their synaptic terminals such as L-glutamate and substance P and trigger cellular events in the central nervous system that extend over different time frames. Short-term alterations of neuronal excitability, reflected for example in rapid changes of neuronal discharge activity, are sensitive to conventional analgesics, and do not commonly involve alterations in activity-dependent gene expression. Novel compounds and new regimens for drug treatment to influence activity-dependent long-term changes in pain transducing and suppressive systems (pain matrix) are emerging.


2021 ◽  
Vol 36 (4) ◽  
pp. 285-296
Author(s):  
Adriana Wawer ◽  
Agnieszka Piechal

Objective. Some viral infections can have a harmful effect on the functioning of the nervous system and can even cause serious neurological damage. This work aims to review the results of studies published so far concerning neurological complications in people infected with coronaviruses, especially SARS-CoV-2, and possible mechanisms responsible for nervous system damage. Literature review. Recently, there have been reports that coronaviruses, including SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), cause acute respiratory disease, exhibit neurotropic properties and can also cause neurological symptoms. There are studies published showing that these viruses may penetrate to the brain and cerebrospinal fluid. Conclusions. Coronaviruses are still poorly understood, so it seems important to study the potential impact of SARS-CoV-2 infections on the nervous system. It seems appropriate that patients infected with SARS-CoV-2 should be early evaluated for neurological symptoms, including headache and impaired consciousness.


Sign in / Sign up

Export Citation Format

Share Document