Injury Risks of Rear Occupant in Typical Four-door Type of Pick-up Truck under Vehicle Collision

Author(s):  
Saiprasit Koetniyom ◽  
Saharat Chanthanumataporn ◽  
Julaluk Carmai ◽  
Manus Dangchat ◽  
Songwut Mongkonlerdmanee ◽  
...  

This research explores the injury risks of occupants in four-door type of pick-up truck using experimental based collision with Hybrid III dummy for occupant injury indicators. The full-sized crash laboratory was developed to conduct full frontal impact based on standard regulation. To verify performance of full-sized crash laboratory and vehicle deceleration, low and high speed tests were conducted at the same vehicle. The Hybrid III dummy with head and chest sensors was used at the rear outboard seat during high speed test. Consequently, the deflection and thoracic viscous criteria, which represent the chest injuries, are up to 93 mm and 3.96 m/s, respectively, high beyond the standard requirement. Moreover, the most important finding of this research is that the four-door pickup truck is subjected to the 2nd impact up to 116.51 G at dummy head with higher resultant acceleration than the 1st impact (65.62 G) due to the limited space behind the rear headrest and thinner backrest of rear seat. This research also investigates the post-crash results to illustrate the suggestive idea for improving crashworthiness of future design resulting in mitigation of occupant injuries.

2005 ◽  
Author(s):  
Elham Sahraei Esfahani ◽  
Kurosh Darvish ◽  
Mohamad Parnianpour ◽  
Akbar Bateni

In this research, the effect of beam buckling in a predefined direction is used to reduce occupant injuries in frontal crashes of an ultra-low-floor (ULF) city bus. In ULF buses, the floor structure consists of several longitudinal long beams, which in case of a frontal crash may buckle due to the axial impact. The direction of rotational acceleration of the driver seat due to buckling is highly affected by the position of the driver seat. A finite element model of an ULF bus was developed using LS-Dyna. The driver model, a Hybrid III 50th male dummy with deformable jacket and abdomen, was restrained to the seat with a 3-point belt. An Elastic-Plastic material model was used for the bus structure to investigate the buckling behavior of the beam elements. Using diagonal beams to guide the buckling in a desired direction, rewarding results were achieved in reducing the occupant injuries. For example, with an extra diagonal beam under the seat, the driver’s HIC15 was reduced from 739 to 415.7 and HIC36 from 791 to 700.6.


Author(s):  
Chandrashekhar K. Thorbole ◽  
David A. Renfroe ◽  
Hamid M. Lankarani

The motor coach is an essential element of the mass transportation system in the United States and all around the globe. Rollover accidents associated with any motor coach without an adequate occupant protection system may result in serious or fatal occupant injuries. The seat belt is an essential safety device in protecting an occupant in a rollover accident. It has been observed that just a quarter roll of a bus results in fatal injuries to an unbelted occupant. This severe nature of occupant injury in a less severe bus roll is attributable to the large flying distance within the unpadded interior and the impact with other fellow occupants. In this situation the presence of a seat belt is mandatory to protect the occupants from serious injuries by preventing their ejection from their seats. The three-point restraint is the best possible solution for the motor coach seat belt requirement. The understanding of shoulder strap placement with respect to the occupant is important information. This information facilitates the best possible seat belt configuration for all occupants which will minimize the slippage of the shoulder strap during a rollover accident. The slipping of the shoulder strap is a function of rollover type, rollover direction, roll rate and the occupant location in a vehicle with respect to roll direction. A Finite Element bus model is used to conduct a trip rollover simulation at two different trip velocities. The motion file, as obtained from this simulation, is used to prescribe motion to a MADYMO facet bus model. The standard Hybrid III 50th percentile ATD (Anthropomorphic Test Device) is used to model all the belted occupants. The FE belt model is used to facilitate the simulation of slippage on the shoulder. This study demonstrates the best possible configuration of the three-point restraints for motor coach occupants in a rollover accident using the computational technique. Knowledge of this kind will help the industry to identify and implement seat belts with the best configuration for occupant rollover protection.


Author(s):  
Xiuju Yang ◽  
Jiang Luo ◽  
Jianwei Yang ◽  
Shanshan Pu ◽  
Ruizhen Zhang ◽  
...  

The objective of this study was to investigate the effect of sedan wheelbase size on the kinematics and injury severity of left rear-seat occupants by using the finite element (FE) modeling method. A total of 270 cases with detailed accidental information records were analyzed to define the influence laws of wheelbase size and impact speed on the injury of left rear-seat occupants. First, the THUMS (Ver. 4.0.2) FE model was used to reconstruct two small offset collisions with different wheelbases size and unbelted left rear-seat occupants, and the effectiveness of the accident model was verified. Then, seatbelts were added to the left rear-seat occupant models. Finally, LS-DYNA software was used to study the correlation among head and chest injury and five sedan wheelbases sizes (2300, 2450, 2600, 2750, and 2905 mm) at three impact velocities (54, 64, and 74 km/h). The results showed that the occupants’ chest injuries showed an upward trend at the impact velocity of 64 and 74 km/h when the wheelbases sizes was reduced to 2300 mm. This research illustrated that at higher impact velocities, excessively small wheelbases might increase the chest injury severity of left rear-seat occupants.


2021 ◽  
Vol 11 (4) ◽  
pp. 1887
Author(s):  
Markus Scherrer ◽  
Noelia Vico Triviño ◽  
Svenja Mauthe ◽  
Preksha Tiwari ◽  
Heinz Schmid ◽  
...  

It is a long-standing goal to leverage silicon photonics through the combination of a low-cost advanced silicon platform with III-V-based active gain material. The monolithic integration of the III-V material is ultimately desirable for scalable integrated circuits but inherently challenging due to the large lattice and thermal mismatch with Si. Here, we briefly review different approaches to monolithic III-V integration while focusing on discussing the results achieved using an integration technique called template-assisted selective epitaxy (TASE), which provides some unique opportunities compared to existing state-of-the-art approaches. This method relies on the selective replacement of a prepatterned silicon structure with III-V material and thereby achieves the self-aligned in-plane monolithic integration of III-Vs on silicon. In our group, we have realized several embodiments of TASE for different applications; here, we will focus specifically on in-plane integrated photonic structures due to the ease with which these can be coupled to SOI waveguides and the inherent in-plane doping orientation, which is beneficial to waveguide-coupled architectures. In particular, we will discuss light emitters based on hybrid III-V/Si photonic crystal structures and high-speed InGaAs detectors, both covering the entire telecom wavelength spectral range. This opens a new path towards the realization of fully integrated, densely packed, and scalable photonic integrated circuits.


2017 ◽  
Vol 139 (10) ◽  
Author(s):  
Daniel Aggromito ◽  
Mark Jaffrey ◽  
Allen Chhor ◽  
Bernard Chen ◽  
Wenyi Yan

When simulating or conducting land mine blast tests on armored vehicles to assess potential occupant injury, the preference is to use the Hybrid III anthropomorphic test device (ATD). In land blast events, neither the effect of body-borne equipment (BBE) on the ATD response nor the dynamic response index (DRI) is well understood. An experimental study was carried out using a drop tower test rig, with a rigid seat mounted on a carriage table undergoing average accelerations of 161 g and 232 g over 3 ms. A key aspect of the work looked at the various lumbar spine assemblies available for a Hybrid III ATD. These can result in different load cell orientations for the ATD which in turn can affect the load measurement in the vertical and horizontal planes. Thirty-two tests were carried out using two BBE mass conditions and three variations of ATDs. The latter were the Hybrid III with the curved (conventional) spine, the Hybrid III with the pedestrian (straight) spine, and the Federal Aviation Administration (FAA) Hybrid III which also has a straight spine. The results showed that the straight lumbar spine assemblies produced similar ATD responses in drop tower tests using a rigid seat. In contrast, the curved lumbar spine assembly generated a lower pelvis acceleration and a higher lumbar load than the straight lumbar spine assemblies. The maximum relative displacement of the lumbar spine occurred after the peak loading event, suggesting that the DRI is not suitable for assessing injury when the impact duration is short and an ATD is seated on a rigid seat on a drop tower. The peak vertical lumbar loads did not change with increasing BBE mass because the equipment mass effects did not become a factor during the peak loading event.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5288
Author(s):  
Naveen Shirur ◽  
Christian Birkner ◽  
Roman Henze ◽  
Thomas M. Deserno

Automotive airbags protect occupants from crash forces during severe vehicle collisions. They absorb energy and restrain the occupants by providing a soft cushion effect known as the restraint effect. Modern airbags offer partial restraint effect control by controlling the bag’s vent holes and providing multi-stage deployment. Full restraint effect control is still a challenge because the closed-loop restraint control system needs airbag–occupant contact and interaction feedback. In this work, we have developed novel single and matrix capacitive tactile sensors to measure the occupant’s contact data. They can be integrated with the airbag surface and folded to follow the dynamic airbag shape during the deployment. The sensors are tested under a low-velocity pendulum impact and benchmarked with high-speed test videos. The results reveal that the single sensor can successfully measure occupant–airbag contact time and estimate the area, while the contact position is additionally identified from the matrix sensor.


Author(s):  
Jerry S. Ogden

The Forensic Engineering Analysis Of Bicycle-Vehicle Incidents Presents Its Own Unique Set Of Challenges. Often, The Forensic Engineer Is Faced With A Limited Data Set For Determining Vehicle Impact Speed From The Physical Evidence Produced By A Bicycle Collision With An Automobile, Which May Not Be Of Issue For A Vehicle-To-Vehicle Collision At Similar Speeds. This Paper Analyzes A Collision Between A Light Duty Pickup Pulling A Tandem Axle Utility Trailer And A Bicycle Ridden By A Minor Child. There Were Allegations That The Pickup Was Traveling At A High Speed Above The Speed Limit, As Well As Passing Another Vehicle At The Time Of The Incident. In Order To Accurately And Dependably Determine The Speed Of The Ford F350 Pickup Involved In This Incident Event, This Forensic Engineer Elected To Recreate The Vehicle Locked Wheel Skidding Evidence That Was Produced During The Incident Event And Photographically Recorded By Police Investigators. The Dynamic Skid Testing Technique, Test Equipment, And General Test Procedures Used To Accurately Determine Vehicle Speeds For This Incident Event, And How It Can Be Applied To Similar Collision Events Are Discussed In This Paper


Author(s):  
Nguyen LaTray ◽  
Daejong Kim

This work presents the theoretical and experimental rotordynamic evaluations of a rotor–air foil bearing (AFB) system supporting a large overhung mass for high-speed application. The proposed system highlights the compact design of a single shaft rotor configuration with turbomachine components arranged on one side of the bearing span. In this work, low-speed tests up to 45 krpm are performed to measure lift-off speed and to check bearing manufacturing quality. Rotordynamic performance at high speeds is evaluated both analytically and experimentally. In the analytical approach, simulated imbalance responses are studied using both rigid and flexible shaft models with bearing forces calculated from the transient Reynolds equation along with the rotor motion. The simulation predicts that the system experiences small synchronous rigid mode vibration at 20 krpm and bending mode at 200 krpm. A high-speed test rig is designed to experimentally evaluate the rotor–air foil bearing system. The high-speed tests are operated up to 160 krpm. The vibration spectrum indicates that the rotor–air foil bearing system operates under stable conditions. The experimental waterfall plots also show very small subsynchronous vibrations with frequency locked to the system natural frequency. Overall, this work demonstrates potential capability of the air foil bearings in supporting a shaft with a large overhung mass at high speed.


Trudy NAMI ◽  
2021 ◽  
pp. 25-33
Author(s):  
V. G. Chelnokov ◽  
B. V. Savel'ev

Introduction (problem statement and relevance). Wheels are components that ensure the safety of vehicles. One of the main ways to test the fatigue strength of wheels is a rotating bending load test. The methodology of these tests, regulated by international and national regulatory documents, allows an indirect method for measuring the normalized force effect on the wheels, in which there are always risks of methodological errors.The purpose of the study was to identify potential sources of methodological errors when testing wheels in the bending-rotating mode.Methodology and research methods. Analytical research methods from the field of practical vibration theory were used in the article, considering the critical state of rotating shafts and rotors. Scientific novelty and results. The sources of potential methodological errors and their relationship with the design characteristics of the bench equipment and the wheel itself were determined.Practical significance. Practical recommendations have been given on the change and control of the stand components design characteristics aimed at minimizing errors. The high-speed test modes were determined, in which the error of the test effect on the wheel did not go beyond the normative limits.


Sign in / Sign up

Export Citation Format

Share Document