scholarly journals Comparative Microstructural Study on Mechanical Properties of Concrete Enhanced with Graphite and Graphene Compound

2018 ◽  
Vol 7 (4.5) ◽  
pp. 91
Author(s):  
P. Sudheer ◽  
Dr S. Chandramouli

The present study is based on nano technology and came up with the idea of introducing nanoparticles in the raw materials used for construction. Nano materials are available in three principal shapes 0, 1 and 2 Dimensional nanoparticles. 0D and 1D nanofibers are such as carbon nanotubes and nanosilica compounds. This study has investigated the physical and chemical properties of graphite and graphene compound and its applicability in construction industry.  Graphene has created interest as it is believed to improve the strength of concrete allowing the possibility of controlling properties of concrete. In this work graphene is used as a reinforcing additive in cement-based mortar and concrete. Own Graphene compound is prepared using conventional graphite and concentrated hydrogen peroxide in the laboratory due to the unavailability of graphene. As a part of microstructural investigation, SEM and EDS analysis on graphite and graphene compounds before and after implementation are carried out in the laboratory. Then the two compounds are replaced as a part of small percentage in cement mortar cubes casted for various proportions. The mechanical properties of cement-based composites are studied after incorporating of graphite and graphene compounds at low dosages in concrete and then the results are compared. 

2008 ◽  
Vol 59 (11) ◽  
Author(s):  
Cristina Dusescu ◽  
Anca Borcea ◽  
Vasile Matei ◽  
Ion Popa ◽  
Irina Gabriela Radulescu

The present paper studies biodiesel samples preparation by transesterification and compares their physical and chemical properties (biofuels prepared from different raw materials - vegetable oils: sunflower oil, crocus oil and soya bean oil) and the biodegradability degree, as well as the possibilities of the integration of such production unit in industrial diagram of auto fuels production.


2012 ◽  
Vol 554-556 ◽  
pp. 2112-2115
Author(s):  
Hui Li ◽  
Xuan Wang ◽  
Yong Zhu ◽  
Qin Ren

Amber and copal belong to the natural resin, which are similar and transitional in the physical and chemical properties. The artificial heat-pressurized treatment is contributed to the polymerization of the natural copal, and turns into green, yellow-green and deep orange-yellow copal. It is very difficult to identify amber from the heat- pressurized treatment copal only based on the gemological parameters.The thermal behavior of amber and the copal before and after heat-pressurized treatment were analyzed by means of differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy(FTIR) and nuclear magnetic resonance(NMR). The results show that amber exists an evident endothermic peak around 123~132°C, and copal reveals an obvious endothermic peak at about 174~178°C, and the heat pressurized treatment copal occurs a clear exothermic peak around 150~152°C. The differences between endothermic or exothermic transition and peak position reveal occurring thermal oxidation or the bond breaking or the melting, which are of great significance in the identification.


2021 ◽  
Vol 11 (8) ◽  
pp. 3334
Author(s):  
Jorge Suárez-Macías ◽  
Juan María Terrones-Saeta ◽  
Francisco Javier Iglesias-Godino ◽  
Francisco Antonio Corpas-Iglesias

Energy consumption, because of population development, is progressively increasing. For this reason, new sources of energy are being developed, such as that produced from the combustion of biomass. However, this type of renewable energy has one main disadvantage, the production of waste. Biomass bottom ash is a residue of this industry that currently has not much use. For this reason, this research evaluates its use as a filler in bituminous mixtures, since this sector also has a significant impact on the environment, as it requires large quantities of raw materials. With this objective, first, the physical and chemical properties of biomass bottom ashes were evaluated, verifying their characteristics for their use as filler. Subsequently, bituminous mixtures were conformed with biomass bottom ash as filler, and their physical and mechanical properties were analyzed through particle loss and Marshall tests. The results of these tests were compared with those obtained with the same type of mixture but with conventional and ophite aggregates. This study confirmed that biomass bottom ash was viable for use as a filler, creating mixtures with a higher percentage of bitumen, better mechanical behavior, and similar physical properties. In short, more sustainable material for roads was obtained with waste currently condemned to landfill.


2021 ◽  
Vol 316 ◽  
pp. 51-55
Author(s):  
Tamara I. Shishelova ◽  
Vadim V. Fedchishin ◽  
Mikhail A. Khramovskih

Rapid expansion of technologies poses higher requirements to structural materials and items made of them. Conventional materials are being replaced by composite materials (composites). Different additives enhancing the properties of initial materials are used as reinforcement fibers of composites. Utilization of micro-and nanosize particles for production of present-day materials is paid much attention to. Whiskers are among such materials. These crystals have high strength, high chemical and temperature resistance. But for rational utilization of whickers of different chemical composition in composite materials one should know their physical and chemical properties. Objectives of the paper: to study physical and chemical properties of whiskers in different compounds, their composition and structure; to prove experimentally the feasibility of utilizing whiskers as a reinforcement fiber of composite materials. Object of study: specimens of whiskers of silicon nitride (Si3N4), aluminum oxide (Al2O3), aluminum nitride (AlN), and mullite (Al6Si2O13). Methods of investigation: thermal study of specimens, study of mechanical properties and chemical strength, and IR-spectroscopy. Results of study: specimens of whiskers have been studied and their mechanical properties have been tabulated for comparison. Extensive thermal investigation was followed by deduction of regularities and identification of chemical properties of whiskers. IR-spectra of whiskers have been studied and conclusions on molecular composition and on presence of impurities in some whiskers have been made.


Author(s):  
Tjokorda Gde Tirta Nindhia ◽  
Zdenek Knejzlík ◽  
Tomáš Ruml ◽  
I Wayan Surata ◽  
Tjokorda Sari Nindhia

Silk can be produced by spider or insect and have prospect as biomaterial for regenerative healing in medical treatment. Silk having physical and chemical properties that support biocompatibility in the living things..In this research, silk that was obtained from Indonesia natural resource of Attacus atlas silkmoth was explored and then will be  developed for biocompatible biomaterial. The treatment with NaOH was developed to separate the fiber from the cocoon. The obtained fiber is investigated its mechanical property by performing tensile test for single fiber. The biocompatibility testing was conducted with human cell (osteosarccoma) cultivation. The result identify that separation by using NaOH yield better better mechanical properties comparing konvenstional method with boiling in hot water. Biocompatibility testing indicate that the the fiber having good biocompatibility.


2020 ◽  
Vol 26 (1) ◽  
pp. 82-93
Author(s):  
Reihaneh Radmanesh ◽  
◽  
Mohsen Nabi Meybodi ◽  
Vahid Ramezani ◽  
Maryam Akrami ◽  
...  

Aims: Any pharmaceutical product made in pharmacy, hospital or factory may be contaminated with microbes. This contamination can originate from raw materials or during production. Hence, it is important to study the physical and chemical properties and stability of compounded drugs. Methods & Materials: In this study, first a specific sample of prescribed medication was ordered from 63 pharmacies in Yazd, Iran. After collecting the samples, the amount of microbial contamination, viscosity and particle size distribution and their stability were investigated and their results were compared to the standard levels. Findings: Based on the results, 31.7% of the samples had discoloration and 23.8% showed creaming phenomenon. In terms of particle size distribution, 57.1% of the samples had a 20-40 μm particle size and 49.2% had a viscosity equal to 2500-3000 centipoise. Regarding stability, 12.6% of the samples underwnet phase change at 30-40°C. About of the amount of hydroquinone in samples, 35% had acceptable amount. In 23.8% of the samples, fungal infection was observed. Conclusion: Contrary to a popular belief that the compounded medicines produced in pharmacies have microbial contamination, the results of this study showed that the microbial contamination of these compounded medications is low.


2018 ◽  
Vol 12 (3) ◽  
Author(s):  
O. O. Bondarchuk

Physical and chemical properties of cream multistep modes of ripening and fermentations are investigation and their role in the production of sour-cream butter is studied. The process of ripening of cream was carried out multistep, regimes were selected depending on seasonal changes in the composition of milk fat. For raw materials of the autumn-winter period, for the values of iodine number 29.1–34.5, the first stage of ripening was carried out at a temperature of 8°C for 2 hours, the second stage – at 21°C for 7 hours, the third stage – at 13°C for 10 hours. For raw of spring-summer period, for the values of iodine number 34.5–40.1, the first stage of ripening was carried out at 21°C for 6 hours, the second stage – at 13°C for 4 hours, the third stage – at 8°C for 8 hours. It has been established that individual modes of low-temperature cream preparation, taking into account seasonal changes in the composition of milk fat, make it possible to obtain cream before churning almost with the same indexes of effective viscosity. The content of the crystalline phase of milk fat under both temperature regimes was 38.7–40.1%, which is sufficient to obtain of proper consistency sour-cream butter. The content of diacetyl and volatile organic acids more depend on the level of fermentation of cream than on the technological regimes of ripening and seasonality of raw materials. It has been proved that an increase in the fermentation degree of cream promotes an increase in the acidity of plasma and the content of aroma-producing components in the butter, and, accordingly, affects the degree of the sour taste. It is recommended for the production of cultured butter to begin the cream when the acidity of the plasma reaches 60ºT, which ensures the formation of high sensorial characteristic of the finished product.


2017 ◽  
Vol 1 (1) ◽  
pp. 19-24
Author(s):  
Nurlia Latifah ◽  
Agus Sundaryono ◽  
Rina Elvia

Conversion of CPO waste into biofuel is one of the efforts to find alternative energy to overcome Indonesia's energy crisis. The resulting methyl ester was further processed into biofuel by cracking process with Ni/TiO2 and Co/TiO2 catalysts at temperature > 350oC for 2.5 hours followed by distillation. Educational research was done by doing the learning process by using biofuel module. The optimum biofuel yield was obtained from cracking methyl ester with 5% Ni/TiO2 catalyst and 3% Co/TiO2 catalyst respectively of 66,67 and 61,90%. The physical and chemical properties of cracked biofuels with Ni/TiO2 and Co/ TiO2 catalysts have complied with ASTM standards for biofuel except acid numbers. There is an increase in student learning outcomes before and after using the module. 


Author(s):  
T. Mamilov ◽  
◽  
G.S. Aitkaliyeva ◽  
A.B. Ismailova ◽  
M.A. Yelubay ◽  
...  

This paper presents the results of a study of the physical and chemical properties of samples of vegetable oils (sunflower, rapeseed, olive). It has been shown that the viscosity of oils varies from 41.4 to 61.7 cSt at a temperature of 40 ° C for olive and sunflower oils, respectively. The acid numbers of the oil samples were also determined, it was found that the lowest indicator is characteristic of sunflower oil. Pour points of oils also range from -3 to -16 ° C for olive and sunflower oils, respectively. Using the method of IR spectroscopy, functional groups in the composition of samples of vegetable oils were studied and it was shown that the composition of oils contains carbonyl and hydroxyl functional groups, indicating the presence of carboxylic acids. Based on studies of the physical and chemical properties of vegetable oils, it was found that sunflower, olive and rapeseed oils can serve as raw materials for the synthesis of biofuels based on them, since they contain free fatty acids. To obtain biodiesel fuel based on vegetable oils, it is planned to use the transesterification method in the presence of various catalysts (alkaline, acidic, and complex).


Sign in / Sign up

Export Citation Format

Share Document