scholarly journals Bioplastic Biodegradation Based on Ganyong Umbi States with Addition of Sorbitol and CMC (Carboxy Methil Cellulose) In Soil Media

Author(s):  
Lukman Ma’arif ◽  
Ulia Fitrass ◽  
Endaruji Sedyadi

Bioplastics made using the basic ingredients of canna tuber starch with sorbitol plasticizer and the addition of CMC variations have been carried out. This study aims to understand the effect of adding CMC to the mechanical properties and biodegradability of bioplastics in soil media. This research was carried out with 4 stages of work namely, extraction of starch from canna tubers, synthesis of bioplastic manufacturing using the blending method, testing mechanical properties in the form of thickness, tensile strength, elongation, and young modulus. Characteristics of functional groups have been tested using FTIR and bioplastic biodegradability testing has been carried out on soil media for 21 days by looking at weight loss from bioplastics. The variation of adding CMC used is 0; 0.25; 0.5; 0.75; 1; 1.25; 1.5 and 2 grams. The best mechanical properties are produced with thickness of 0.0795 mm, tensile strength of 27.53 MPa, elongation of 3.018% and young modulus of 885.66 MPa. The results of bioplastic biodegradation testing on soil media for 21 days showed that bioplastics made were biodegradable. Reduction of bioplastic mass in soil media by 86,032%.

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1064
Author(s):  
Mohd Nor Faiz Norrrahim ◽  
Hidayah Ariffin ◽  
Tengku Arisyah Tengku Yasim-Anuar ◽  
Mohd Ali Hassan ◽  
Nor Azowa Ibrahim ◽  
...  

Residual hemicellulose could enhance cellulose nanofiber (CNF) processing as it impedes the agglomeration of the nanocellulose fibrils and contributes to complete nanofibrillation within a shorter period of time. Its effect on CNF performance as a reinforcement material is unclear, and hence this study seeks to evaluate the performance of CNF in the presence of amorphous hemicellulose as a reinforcement material in a polypropylene (PP) nanocomposite. Two types of CNF were prepared: SHS-CNF, which contained about 11% hemicellulose, and KOH-CNF, with complete hemicellulose removal. Mechanical properties of the PP/SHS-CNF and PP/KOH-CNF showed an almost similar increment in tensile strength (31% and 32%) and flexural strength (28% and 29%) when 3 wt.% of CNF was incorporated in PP, indicating that hemicellulose in SHS-CNF did not affect the mechanical properties of the PP nanocomposite. The crystallinity of both PP/SHS-CNF and PP/KOH-CNF nanocomposites showed an almost similar value at 55–56%. A slight decrement in thermal stability was seen, whereby the decomposition temperature at 10% weight loss (Td10%) of PP/SHS-CNF was 6 °C lower at 381 °C compared to 387 °C for PP/KOH-CNF, which can be explained by the degradation of thermally unstable hemicellulose. The results from this study showed that the presence of some portion of hemicellulose in CNF did not affect the CNF properties, suggesting that complete hemicellulose removal may not be necessary for the preparation of CNF to be used as a reinforcement material in nanocomposites. This will lead to less harsh pretreatment for CNF preparation and, hence, a more sustainable nanocomposite can be produced.


2012 ◽  
Vol 32 (6-7) ◽  
pp. 435-444 ◽  
Author(s):  
Hsin-Tzu Liao ◽  
Chin-San Wu

Abstract Melt blending of polylactide (PLA), poly(ε-caprolactone) (PCL), and wood flour (WF) was performed in an effort to overcome the major drawbacks (brittleness and high price) of PLA. In addition, the acrylic acid (AA)-grafted PLA70PCL30 (PLA70PCL30-g-AA) was used as the alternative for the preparation of ternary blends to improve the compatibility and the dispersability of WF within the PLA70PCL30 matrix. As expected, PCL improved the elongation at break and the toughness of PLA but decreased the tensile strength and modulus. Because the hydrophilic WF is dispersed physically in the hydrophobic PLA70PCL30 matrix, as the result of Fourier transform infrared analysis, the mechanical properties of PLA70PCL30 became noticeably worse when it was blended with WF. This problem was successfully conquered by using PLA70PCL30-g-AA to replace PLA70PCL30 due to the formation of an ester carbonyl group between PLA70PCL30-g-AA and WF. Furthermore, the PLA70PCL30-g-AA/WF blend provided a plateau tensile strength at break when the WF content was up to 50 wt%. PLA70PCL30/WF exhibited a tensile strength at break of approximately 3–25 MPa more than PLA70PCL30-g-AA/WF. By using p-cresol and tyrosinase, the enzymatic biodegradable test showed that PLA70PCL30-g-AA is somewhat more biodegradable than PLA70PCL30 because the former has better water absorption. After 16 weeks, the weight loss of the PLA70PCL30/WF (50 wt%) composite was >80%. PLA70PCL30-g-AA/WF exhibited a weight loss of approximately 1–12 wt% more than PLA70PCL30-g-AA/WF. It was also found that the addition of WF to PLA70PCL30 or PLA70PCL30-g-AA decreased the crystallinity of PLA and PCL in PLA70PCL30 or PLA70PCL30-g-AA and then increased their biodegradable property.


Author(s):  
Ênio Henrique Pires da Silva ◽  
Emiliano Barretto Almendro ◽  
Amanda Albertin Xavier da Silva ◽  
Guilherme Waldow ◽  
Flaminio CP Sales ◽  
...  

Composites using natural fibers as reinforcement and biodegradable polymers as matrix are considered environmentally friendly materials. This paper seeks the mechanical and morphological characterization of a biocomposite of polyurethane (PU) derived from a blend of vegetable oils doped with aluminatrihydrate (ATH) and reinforced with hydrated cotton fiber fabric (HCF). The comparison and study were performed based on the properties of the: (i) pure PU; (ii) PU doped with ATH containing 30% of the final mass (PU+30%ATH); (iii) composite of PU reinforced with 7 layers of cotton fiber fabric (PU+7CF); (iv) composite of PU+30%ATH reinforced with 7 layers of CF (PU+30%ATH+7CF); (v) composite of PU+30%ATH reinforced with 7 layers of hydrated cotton fiber fabric (PU+30%ATH+7HCF). The mechanical properties obtained according to the tensile test for the composite PU+30%ATH+CF with fibers oriented at 0° showed a significant increment in tensile strength (60 MPa) and the modulus of elasticity (4.7 GPa) when compared to pure PU (40 MPa) and (1.7 GPa) respectively. PU+30%ATH also presented a rising tensile strength (31 MPa) and Young modulus (2.6 GPa). For the composite with addition of water, results presented a significant decrease in strength (31.3 MPa) and stiffness (0.9 GPa) than the composite with no water. Electron microscopy (SEM) analyses exhibited that the samples with addition of water showed the presence of large amounts of pores and the lower interaction between matrix and fiber. These results may explain the lower mechanical properties of this material. DOI: http://dx.doi.org/10.30609/JETI.2019-7576


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3425
Author(s):  
Pei-Yi Wong ◽  
Akiyoshi Takeno ◽  
Shinya Takahashi ◽  
Sook-Wai Phang ◽  
Azizah Baharum

The biodegradability problem of polymer waste is one of the fatal pollutFions to the environment. Enzymes play an essential role in increasing the biodegradability of polymers. In a previous study, antistatic polymer film based on poly(lactic acid) (PLA) as a matrix and polyaniline (PAni) as a conductive filler, was prepared. To solve the problem of polymer wastes pollution, a crazing technique was applied to the prepared polymer film (PLA/PAni) to enhance the action of enzymes in the biodegradation of polymer. This research studied the biodegradation test based on crazed and non-crazed PLA/PAni films by enzymes. The presence of crazes in PLA/PAni film was evaluated using an optical microscope and scanning electron microscopy (SEM). The optical microscope displayed the crazed in the lamellae form, while the SEM image revealed microcracks in the fibrils form. Meanwhile, the tensile strength of the crazed PLA/PAni film was recorded as 19.25 MPa, which is almost comparable to the original PLA/PAni film with a tensile strength of 20.02 MPa. However, the Young modulus decreased progressively from 1113 MPa for PLA/PAni to 651 MPa for crazed PLA/PAni film, while the tensile strain increased 150% after crazing. The significant decrement in the Young modulus and increment in the tensile strain was due to the craze propagation. The entanglement was reduced and the chain mobility along the polymer chain increased, thus leading to lower resistance to deformation of the polymer chain and becoming more flexible. The presence of crazes in PLA/PAni film showed a substantial change in weight loss with increasing the time of degradation. The weight loss of crazed PLA/PAni film increased to 42%, higher than that of non-crazed PLA/PAni film with only 31%. The nucleation of crazes increases the fragmentation and depolymerization of PLA/PAni film that induced microbial attack and led to higher weight loss. In conclusion, the presence of crazes in PLA/PAni film significantly improved enzymes’ action, speeding up the polymer film’s biodegradability.


2014 ◽  
Vol 27 (2) ◽  
pp. 77-82 ◽  
Author(s):  
H Ahmad ◽  
MA Islam ◽  
MF Uddin

Chopped jute fiber-epoxy composites with varying fiber length (2-12 mm) and mass fraction (0.05-0.35) had been prepared by a heat press unit. The cross-linked product was characterized in terms of specific gravity, thermal conductivity, tensile strength, Young modulus and elongation at break. The transverse thermal conductivities for randomly oriented fibers in the composite were investigated by Lees and Charlton’s method. The tensile strength, Young modulus and elongation at break were investigated by a Universal Tensile Tester. With an increase in the fiber content (irrespective of the fiber length), the thermal conductivity of the composite decreases; the decreasing rate being highest for the fiber length of 2 mm followed by that for the fiber length of 6 and 12 mm. The decreasing rate of the thermal conductivity of the jute-epoxy composite is comparatively higher to that reported in literature for acrylic polymer hemp fiber composite. The tensile strength also decreases with the increase of the fiber content in the composite. The fiber length does not show to have significant effect on the tensile strength of the composite; the variation in strength being masked within experimental error. The Young modulus increases with the increase of fiber content within elastic limit; showing the highest values for the fiber length of 6 mm followed by those for the fiber length of 2 mm and 12 mm. The elongation at break shows slightly increasing trend up to 15% fiber content, but beyond that it decreases drastically. The specific gravity decreases with the increase in the fiber content and thus the recalculated specific tensile strength is found to keep at a stable level of 36MPa up to the fiber content of 20%, and beyond that the specific tensile strength decreases with the increase in the fiber content. It is concluded that jute fiber-epoxy composite could be used as a good heat-insulating material. Further investigation is recommended on the improvement of the thermal insulation keeping the mechanical properties unchanged or even improved. The TGA study is also required to ascertain the field of application of the material. DOI: http://dx.doi.org/10.3329/jce.v27i2.17807 Journal of Chemical Engineering, IEB Vol. ChE. 27, No. 2, December 2012: 77-82


2012 ◽  
Vol 583 ◽  
pp. 22-26 ◽  
Author(s):  
Cui Cui Ling ◽  
Qing Zhong Xue ◽  
Xiao Yan Zhou

The effects of functional groups and degree of functionalization on the young modulus of carbon nanotubes (CNTs) are investigated through molecular dynamics and molecular mechanics simulations. It is found that young’s modulus depends greatly on the functional groups and degree of functionalization. The results show that the fluorine (-F) can replace the hydrogen, and young modulus of sing-walled CNTs (SWNT) modified by -F functional group can inherit the mechanical properties of intrinsic SWNT. The binding energy between functional groups and SWNT, and electrostatic energy among the functional groups are mainly responsible for these findings. These characteristics rival those of SWNT modified by hydrogen allow one to consider SWNT modified by -F functional group for a range of technologies, in particular require better inertness and stability than unachievable for the compound.


2018 ◽  
Vol 7 (1) ◽  
pp. 49-59
Author(s):  
Johan Budiman ◽  
Rodiana Nopianti ◽  
Shanti Dwita Lestari

This research studied the characteristics of bioplastic from large-leafed mangrove (Bruguiera gymnorrizha) starch. This research was arranged used Randomized Block Design (RBD) model, with different starch concentration (0.5%, 1%, 1.5% and 2%) as treatment. The parameters observed were mechanical properties (tensile strength and percent elongation), thickness, water uptake and biodegradation test. The result showed that the starch concentration was not significant, (P>0.05) affected tensile strength and water resistance. Different between treatments was observed as for elongation, thickness and biodegradation test significant (P<0.05). The results obtained from the bioplastic research of large-leafed mangrove starch for tensile strength ranged from 24.59 MPa – 32.91 MPa, percent elongation 2.93% – 4.88%, thickness 0.05 mm – 0,11 mm, water resistance 108.06% – 111.09% and biodegradation test with percent weight loss 17.91% – 54.40% with the highest degradation rate 18.13 – 3.62 mg /15 days burial. The best treatment was obtained by using 1,5% starch, 4 g chitosan and 15% glycerol or equal to starch : chitosan 1.5 g : 4 g and 0.9 mL glycerol.


2018 ◽  
Vol 55 (4) ◽  
pp. 498-501
Author(s):  
Constantin Gheorghe Opran ◽  
Elena Grosu ◽  
Marius Enachescu

Biodegradable polymers became one of the most important materials with large applicability, as they do not generate wastes after life cycle. An important application is food packaging fabricated by injection molding processing. In this paper, we present the investigation of the mechanical properties of some biodegradable polymers based on PLA composites obtained by melting processing and their morphology studied by SEM analyses, in comparison to polypropylene and neat PLA. We found out that tensile strength, elongation at break and Young modulus exhibit values appropriate to injection molding processing and they are very close related to crystalline or amorphous character of the materials.


Author(s):  
Mahiratul Husna Mustaffar ◽  
◽  
Aliff Hisyam A. Razak ◽  

Disposal latex and synthetic rubber gloves is troublesome such that disposal via incineration and land fill may release poisonous gasses and contaminate soil and water, respectively. As solution to latex and synthetic rubber, biodegradable glove is extensively studied. A bio-based filler is extracted from food waste and blended into natural rubber latex (NRL) as a composite NRL. The effect of biodegradability of composite NRL was studied by varying the loading of bio-based filler in a form of starch dispersion and blended into NRL mixture. Herein some amount of starch can be extracted from cassava peel to be incorporated in NRL for a sustainable and yet biodegradable glove. Previous work on incorporation of cassava-peel filler in NRL has shown a biodegradability without compromising the pristine strength of NRL film at 50% loading starch. In this project, tensile strength and weight loss of prepared composite NRL films were optimised via Taguchi and Response Surface Method (RSM) by means of Design Expert software by varying starch/filler loading, curing temperature and curing drying duration. Due to inadequate data, the optimisation from that previous prepared composite NRL was compared with similar work which utilising NRL and bio-based filler. For Pulungan (2020) study, it can be concluded that the tensile strength of cassava peel starch biodegradable film has the best condition at 50°C to 60°C at approximately 5.5 hours. Elongation optimum conditions shows contrast value of temperature and time. Meanwhile, for Wendy (2020) study, it shows the best percentage loading of cassava-peel starch is at 20% to achieve high stress and strain at break. The optimised mechanical properties via Taguchi and RSM are rather different and hence validation on mechanical properties at above mentioned conditions need to be performed experimentally.


Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1747
Author(s):  
Xiaoyan Pang ◽  
Mingde Chen ◽  
Junwei Fu ◽  
Zehua Lin ◽  
Yuming Li ◽  
...  

Graphene (GR) was used to blend with eugenol polysiloxane-polycarbonate (Si-PC) copolymer to prepare a Si-PC/GR nanocomposite via a solution blending method and the impact of graphene on the properties of Si-PC/GR nanocomposite was investigated. The morphology and structure of the Si-PC/GR nanocomposite were characterized. Combining morphology and property analysis, the result showed that when the graphene dispersed uniformly in the Si-PC matrix, the mechanical properties, thermostability and barrier property of Si-PC/GR nanocomposite were enhanced. Compared with Si-PC copolymer, the pyrolytic temperature of Si-PC/2.5%GR nanocomposite at 5% weight loss was 434.3 °C, which was 20.6 °C higher than Si-PC copolymer; and the oxygen barrier value of Si-PC/1.5%GR nanocomposite decreased to 160.2 cm3/m2 24 h 0.1 MPa, which was 53.2 less than pure Si-PC. The mechanical properties of Si-PC/GR nanocomposite were enhanced with an appropriate additive amount of graphene. The hydrophobicity also had been enhanced at the meantime.


Sign in / Sign up

Export Citation Format

Share Document