scholarly journals PO-128 Effects of 30%, 50%, 70%VO2 max treadmill exercises on gut microbiome of atherosclerotic mice

2018 ◽  
Vol 1 (4) ◽  
Author(s):  
Wenting Shi ◽  
Jin Li ◽  
Pengyi Zhang

Objective  To observe the dynamic changes of gut microbiome in mice before and after different intensities of treadmill exercises, and to explore the effects of different intensities of treadmill exercises on gut microbiome of atherosclerotic (AS) mice. Methods  The 50 male ApoE-/- mice aged 8 weeks were randomly divided into 2 groups, 10 mice in the general feeding group and the other 40 mice in the AS group, which were fed with normal and high-fat diet for 4 weeks respectively. Weight and blood test were taken before and after 4 weeks feeding. The serum Triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein (HDL) levels were examined by blood test in ApoE-/- mice model, and atherosclerotic disease degeneration score of adult mice was used to determine the success of modeling after 4 weeks feeding. Then two mice selected from the normal and high-fat group respectively selected to test the maximum oxygen uptake (VO2 max) by the reformative Bedford method, and the running platform speed and slope corresponding to 30%, 50% and 70%VO2 max were determined. The 40 AS mice were randomly divided into the model blank group, the low-intensity exercise group, the medium-intensity exercise group and the high-intensity exercise group according to their weight for 4 weeks of exercises, respectively. The low-intensity exercise group was 30% VO2 max, with a slope of 10 degrees and a speed of 10 m/min. The medium intensity exercise group was 50% VO2 max with a slope of 10 degrees and a speed of 15 m/min. The high-intensity exercise group was 70% VO2 max with a slope of 10 degrees and a speed of 20 m/min. The exercises were performed for 4 weeks, 5 days a week, 20 minutes a day. The fresh feces were collected from 5 groups of mice before and after 4 weeks treadmill exercises. The number of gut Lactobacillus, Bacteroides, Firmicutes, Bifidobacterium, Verrucomicrobiaceae, Akkermansia , Escherichia coli, Collinsella and Clostridium in AS mice were analyzed by 16s sequencing.  Results 1. The TG, TC and LDL-C were significantly increased in the blood serum of the mice after the modeling, and the HDL-C was decreased, and the atherosclerotic disease degeneration score was significantly increased in the adult mice, and the modeling was successful. 2. The different intensity treadmill exercises can increase the number of gut probiotics in mice and decrease the number of harmful bacteria. The beneficial bacteria in gut tract of AS mice with moderate intensity of 50% VO2max was observed in the experiment: Bacteroides, Bifidobacterium and Verrucomicrobiaceae, Akkermansia were significantly increased, P<0.05. The harmful bacteria:Lactobacillus, Escherichia coli, Collinsella and Clostridium were significantly decreased, P<0.05. The ratio of Firmicutes / Bacteroidetes was increased. Conclusions  1. High-fat diet can lead to AS in ApoE-/- mice. 2. The different intensity treadmill exercises can reduce the weight of AS mice. 3. The number and abundance of probiotics of gut microbiome of AS mice could be promoted by different intensity treadmill exercises, among which the medium intensity aerobic exercise can significantly increase the number of beneficial bacteria such Bacteroidetes, Bifidobacteria, Verrucomicrobiaceae and Akkermansia, meanwhile, the structure of gut microbiome in AS mice was improved as well.

2021 ◽  
Vol 12 ◽  
Author(s):  
Laila Silamiķele ◽  
Ivars Silamiķelis ◽  
Monta Ustinova ◽  
Zane Kalniņa ◽  
Ilze Elbere ◽  
...  

Effects of metformin, the first-line drug for type 2 diabetes therapy, on gut microbiome composition in type 2 diabetes have been described in various studies both in human subjects and animals. However, the details of the molecular mechanisms of metformin action have not been fully understood. Moreover, there is a significant lack of information on how metformin affects gut microbiome composition in female mouse models, depending on sex and metabolic status in well controlled experimental setting. Our study aimed to examine metformin-induced alterations in gut microbiome diversity, composition, and functional implications of high-fat diet-induced type 2 diabetes mouse model, using, for the first time in mice study, the shotgun metagenomic sequencing that allows estimation of microorganisms at species level. We also employed a randomized block, factorial study design, and including 24 experimental units allocated to 8 treatment groups to systematically evaluate the effect of sex and metabolic status on metformin interaction with microbiome. We used DNA obtained from fecal samples representing gut microbiome before and after ten weeks-long metformin treatment. We identified 100 metformin-related differentially abundant species in high-fat diet-fed mice before and after the treatment, with most of the species relative abundances increased. In contrast, no significant changes were observed in control diet-fed mice. Functional analysis targeted to carbohydrate, lipid, and amino acid metabolism pathways revealed 14 significantly altered hierarchies. We also observed sex-specific differences in response to metformin treatment. Males experienced more pronounced changes in metabolic markers, while in females the extent of changes in gut microbiome representatives was more marked, indicated by 53 differentially abundant species with more remarkable Log fold changes compared to the combined-sex analysis. The same pattern manifested regarding the functional analysis, where we discovered 5 significantly affected hierarchies in female groups but not in males. Our results suggest that both sexes of animals should be included in future studies focusing on metformin effects on the gut microbiome.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Nur Akmal Ishak ◽  
Maznah Ismail ◽  
Muhajir Hamid ◽  
Zalinah Ahmad ◽  
Siti Aisyah Abd Ghafar

Curculigo latifoliafruit is used as alternative sweetener while root is used as alternative treatment for diuretic and urinary problems. The antidiabetic and hypolipidemic activities ofC. latifoliafruit:root aqueous extract in high fat diet (HFD) and 40 mg streptozotocin (STZ) induced diabetic rats through expression of genes involved in glucose and lipid metabolisms were investigated. Diabetic rats were treated withC. latifoliafruit:root extract for 4 weeks. Plasma glucose, insulin, adiponectin, lipid profiles, alanine aminotransferase (ALT), gamma glutamyltransferase (GGT), urea, and creatinine levels were measured before and after treatments. Regulations of selected genes involved in glucose and lipid metabolisms were determined. Results showed the significant (P<0.05) increase in body weight, high density lipoprotein (HDL), insulin, and adiponectin levels and decreased glucose, total cholesterol (TC), triglycerides (TG), low density lipoprotein (LDL), urea, creatinine, ALT, and GGT levels in diabetic rats after 4 weeks treatment. Furthermore,C. latifoliafruit:root extract significantly increased the expression ofIRS-1,IGF-1,GLUT4,PPARα,PPARγ,AdipoR1,AdipoR2,leptin,LPL, andlipasegenes in adipose and muscle tissues in diabetic rats. These results suggest thatC. latifoliafruit:root extract exerts antidiabetic and hypolipidemic effects through altering regulation genes in glucose and lipid metabolisms in diabetic rats.


2020 ◽  
Author(s):  
Laila Silamiķele ◽  
Ivars Silamiķelis ◽  
Monta Ustinova ◽  
Zane Kalniņa ◽  
Ilze Elbere ◽  
...  

AbstractEffects of metformin, the first-line drug for type 2 diabetes therapy, on gut microbiome composition in type 2 diabetes have been described in various studies both in human subjects and animals. However, the details of the molecular mechanisms of metformin action have not been fully understood. Moreover, there is a significant lack of information on how metformin affects gut microbiome composition in female mice models, as most of the existing studies have focused on males only.Our study aimed to examine metformin-induced alterations in gut microbiome diversity and composition of high-fat diet-induced type 2 diabetes mouse model, employing a randomized block, factorial study design, and including 24 experimental units allocated to 8 treatment groups. We performed shotgun metagenomic sequencing using DNA obtained from fecal samples representing gut microbiome before and after ten weeks-long metformin treatment.We identified 100 metformin-related differentially abundant species in high-fat diet-fed mice before and after the treatment, with most of the species abundances increased. In contrast, no significant changes were observed in control diet-fed mice.We also observed sex-specific differences in response to metformin treatment. Males experienced more pronounced changes in metabolic markers, while, in females, the extent of changes in gut microbiome representatives was more marked, indicated by 53 differentially abundant species with more remarkable Log fold changes compared to the combined-sex analysis. Our results suggest that both sexes of animals should be included in future studies focusing on metformin effects on the gut microbiome.


Author(s):  
Dan-Dan Wang ◽  
Fang Wu ◽  
Ling-Yu Zhang ◽  
Ying-Cai Zhao ◽  
Cheng-Cheng Wang ◽  
...  

Author(s):  
Yuan Liu ◽  
Kangni Yang ◽  
Yuqian Jia ◽  
Jingru Shi ◽  
Ziwen Tong ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
pp. 147-160
Author(s):  
Ranyah Shaker M. Labban ◽  
Hanan Alfawaz ◽  
Ahmed T. Almnaizel ◽  
Wail M. Hassan ◽  
Ramesa Shafi Bhat ◽  
...  

AbstractObesity and the brain are linked since the brain can control the weight of the body through its neurotransmitters. The aim of the present study was to investigate the effect of high-fat diet (HFD)-induced obesity on brain functioning through the measurement of brain glutamate, dopamine, and serotonin metabolic pools. In the present study, two groups of rats served as subjects. Group 1 was fed a normal diet and named as the lean group. Group 2 was fed an HFD for 4 weeks and named as the obese group. Markers of oxidative stress (malondialdehyde, glutathione, glutathione-s-transferase, and vitamin C), inflammatory cytokines (interleukin [IL]-6 and IL-12), and leptin along with a lipid profile (cholesterol, triglycerides, high-density lipoprotein, and low-density lipoprotein levels) were measured in the serum. Neurotransmitters dopamine, serotonin, and glutamate were measured in brain tissue. Fecal samples were collected for observing changes in gut flora. In brain tissue, significantly high levels of dopamine and glutamate as well as significantly low levels of serotonin were found in the obese group compared to those in the lean group (P > 0.001) and were discussed in relation to the biochemical profile in the serum. It was also noted that the HFD affected bacterial gut composition in comparison to the control group with gram-positive cocci dominance in the control group compared to obese. The results of the present study confirm that obesity is linked to inflammation, oxidative stress, dyslipidemic processes, and altered brain neurotransmitter levels that can cause obesity-related neuropsychiatric complications.


Author(s):  
Sihoon Park ◽  
Jae-Joon Lee ◽  
Hye-Won Shin ◽  
Sunyoon Jung ◽  
Jung-Heun Ha

Soybean koji refers to steamed soybeans inoculated with microbial species. Soybean fermentation improves the health benefits of soybeans. Obesity is a serious health concern owing to its increasing incidence rate and high association with other metabolic diseases. Therefore, we investigated the effects of soybean and soybean koji on high-fat diet-induced obesity in rats. Five-week-old male Sprague-Dawley rats were randomly divided into four groups (n = 8/group) as follows: (1) regular diet (RD), (2) high-fat diet (HFD), (3) HFD + steamed soybean (HFD+SS), and (4) HFD + soybean koji (HFD+SK). SK contained more free amino acids and unsaturated fatty acids than SS. In a rat model of obesity, SK consumption significantly alleviated the increase in weight of white adipose tissue and mRNA expression of lipogenic genes, whereas SS consumption did not. Both SS and SK reduced serum triglyceride, total cholesterol, and low-density lipoprotein cholesterol levels, and increased high-density lipoprotein cholesterol levels. SS and SK also inhibited lipid accumulation in the liver and white adipose tissue and reduced adipocyte size. Although both SS and SK could alleviate HFD-induced dyslipidemia, SK has better anti-obesity effects than SS by regulating lipogenesis. Overall, SK is an excellent functional food that may prevent obesity.


2020 ◽  
Vol 19 ◽  
pp. 153473542094967
Author(s):  
Min Kyoon Kim ◽  
Yesl Kim ◽  
SeungHwa Park ◽  
Eunju Kim ◽  
Yerin Kim ◽  
...  

Physical inactivity and high-fat diet, especially high saturated fat containing diet are established risk factors for breast cancer that are amenable to intervention. High-fat diet has been shown to induce tumor growth and metastasis by alteration of inflammation but steady exercise has anti-tumorigenic effects. However, the mechanisms underlying the effects of physical activity on high-fat diet stimulated breast cancer initiation and progression are currently unclear. In this study, we examined how the intensity of physical activity influences high fat diet-stimulated breast cancer latency and progression outcomes, and the possible mechanisms behind these effects. Five-week-old female Balb/c mice were fed either a control diet or a high-fat diet for 8 weeks, and then 4T1 mouse mammary tumor cells were inoculated into the mammary fat pads. Exercise training occurred before tumor cell injection, and tumor latency and tumor volume were measured. Mice with a high-fat diet and low-intensity exercise (HFLE) had a longer tumor latency period, slower tumor growth, and smaller tumor volume in the final tumor assessment compared with the control, high-fat diet control (HFDC), and high-fat diet with moderate-intensity exercise (HFME) groups. Steady low- and moderate-intensity exercise had no effect on cell proliferation but induced apoptosis by activating caspase-3 through the alteration of Bcl-2, Bcl-xL, and Bax expression. Furthermore, steady exercise reduced M2 macrophage polarization in breast tumor tissue, which has been linked to tumor growth. The myokine, myostatin, reduced M2 macrophage polarization through the inhibition of the JAK-STAT signaling pathway. These results suggest that steady low-intensity exercise could delay breast cancer initiation and growth and reduce tumor volume through the induction of tumor cell apoptosis and the suppression of M2 macrophage polarization.


2016 ◽  
Vol 8 (1) ◽  
Author(s):  
Douglas Mahana ◽  
Chad M. Trent ◽  
Zachary D. Kurtz ◽  
Nicholas A. Bokulich ◽  
Thomas Battaglia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document